
Physics Tutorial 4:

Collision Detection



New Concepts

 Broad Phase and Narrow Phase

 Convex and Concave Shapes

 Generic Collision Detection Algorithms

 Separating Axis Theorem



The Broad Phase

and the Narrow Phase



Broad Phase Premise

 Vast majority of our objects will not be colliding –

common sense

 Vast majority of our objects are of a size and location 

which means it isn’t even remotely possible they’re 

colliding

 What we need to do is find a quick way of sorting 

through collision-capable objects in our environment, to 

ensure that as many of the can’t-collides as possible are 

pruned before we get to the narrow phase can-collide 

checks



Broad Phase Premise

 Somewhat analogous to frustum culling in graphics

 We’d NEVER use frustum culling for physics

 Because whether or not objects collide can be really, 

really important (‘falling through the floor’ important) 

whether or not we’re looking at them

 And, if we were making a game based on the Dr Who 

episode “Blink”, doubly so



Broad Phase Premise

 What would happen if we didn’t perform collision 

checks until objects were in view?

 Consider:

 A load of objects are overlapping by a considerable margin 

(not the small margins we deal with normally)

 We turn and bring them into view

 Collision response kicks in

 The world EXPLODES

 Reason for this is our constraint-based system – it reacts 

based on the idea that a change has occurred over a 

single time step. It will assume that this massive 

overlap is the function of a single time step



Broad Phase Premise

 Simple but effective approach is to compare bounding 

boxes, spheres or capsules around objects

 These checks are cheap (more on that later!)

 They cull collision pairs that definitely can’t happen

 While the checks are cheap per pair, relative to a 

complicated narrow phase check, they’re still being 

applied to a 𝑁2 problem, where 𝑁 is the number of 

collisionable objects in our environment.

 It is far more efficient to group nearby agents together 

somehow, to ensure that objects on the left hand side 

of a game map aren’t compared against objects 

opposite (i.e., 𝑘 × 𝑛2, where 𝑘𝑛 = 𝑁)



BSP Trees and

World Space Partitioning

 If we know objects in our environment are going to be 

reasonably ‘normally’ distributed – an even distribution 

throughout the game world – we can use a fixed 

partitioning of our world space.

 This is also appropriate for certain checks, even if we’re 

employing more advanced techniques for other, mobile 

objects (if, for example, our environment has lots of 

stationary but complex colliders)

 Fixed world space partitioning is trivially easy to 

implement, so long as you keep in mind that objects 

might be occupying more than one region



BSP Trees and

World Space Partitioning

 Problem with fixed world space partitioning is that if 

the environment is highly dynamic it can be worse than 

doing nothing

 Because all of our entities might end up in one defined 

‘region’, all we’re doing is making things MORE 

expensive, not less, because we’re adding a sorting 

algorithm which doesn’t reduce our problem at all.

 There has to be a better way…



BSP Trees and

World Space Partitioning

 All we are saying, is give Octrees a chance…

 A more versatile approach, and one favoured in 

industry, is binary search tree based partitioning

 Recursively subdivides the world based on occupancy of 

regions

 So no region contains more than a set maximum number 

of entities, however those entities may be divided 

throughout the environment



BSP Trees and

World Space Partitioning

 Not a perfect solution

 Can be tricky to implement

 Can be too recursive, if objects are very strongly 

clustered

 Scale can be an issue, with bigger objects occupying 

several regions at once if present in an environment 

with many smaller objects

 All that said, very powerful performance enhancement 

to our physics system



Sort and Sweep

 Essentially this algorithm can be bolted on to any broad 

phase checks

 Sorts the entities along one axis, based on the positions 

of their bounding volumes

 Works from one end of the axis to the other, dropping 

items from comparisons as we move beyond their 

furthest point along the axis.

 See the handout for more details



Broad Phase as a Hierarchy

 Once we’ve sorted our environment to minimise the 

number of bounding volume checks (those bounding 

box/sphere/capsule based checks we mentioned 

earlier), we need to actually check those.

 Object pairs that are still possibly colliding after –those-

checks, are passed on to the narrow phase

 In that sense, the broad phase can be considered 

somewhat hierarchical. At the highest level, we’re 

sorting objects by spatial location. At the lowest, we’re 

performing cheap checks on over-estimated volumes 

which allow us to prune the list still further.

 The algorithms from yesterday can help here!



Narrow Phase as a Hierarchy

 The same in part is true of narrow phase – there’s some 
blurrioscity. We can use equations which are capable of 
providing narrowphase collision resolution data as 
broadphase culling checks.

 We can perform, if we want, simple collision checks not 
dissimilar to their broad phase counterparts – in many 
cases, these will provide enough useful data to resolve 
collisions believably

 For objects where that really isn’t feasible/appropriate, 
we have more advanced checks which can be made (and 
will be the subject of today’s lecture)



Narrow Phase Checking



A Note on Collision/Interface 

Detection and SAT

 At this point, having covered broad phase collision 

checks, and some simple algorithms which might handle 

trivial objects at narrow phase, we are moving into the 

area of narrow phase proper

 We’re reminded of how we’re defining collision:

 If there exists a point on the surface of object A which 

lies within the volume defined by object B, objects A 

and B have interfaced/collided



A Note on Collision/Interface 

Detection and SAT

 There are, quite literally, hundreds of algorithms which 

address this problem.

 It’s one of those cases in computing where there’s not 

really a single ‘right answer’

 The most popular algorithms for interface detection in 

real-time are generally accepted to be the Lin-Canny 

algorithm (basis of I-Collide) and the GJK algorithm.



A Note on Collision/Interface 

Detection and SAT

 The obvious question at this point is “Why learn SAT, 

then, instead of Lin-Canny/GJK?”

 The answer is two-fold.

 First, SAT is as much as anything a learning tool which 

permits the programmer to visualise the problem, and 

to visualise each step they take in solving it.

 As you’ll see today, the process we go through in solving 

a problem through SAT is intuitive (if anything in 

geometry is intuitive)



A Note on Collision/Interface 

Detection and SAT

 It’s important that the process be intuitive because 

we’re using the algorithm as a learning tool.

 If the process were more abstract, it’d be harder to 

learn anything meaningful about what the geometry is 

actually doing.

 The other reason is that it’s more straightforward for 

you to implement than many other available algorithms. 

You only have two and a half weeks to get the 

coursework done – you don’t want to spend all of that 

time encoding a physics system without any clue if it’s 

going to work correctly at the end of the day



Convex and

Concave Shapes



Concave

 You should recall from high school that a concave shape 

is one which has a hollow, e.g.



Convex

 By contrast, a convex shape is any shape which is not 

concave – i.e., a shape which does not have a hollow:



Identifying the Difference

 Visually, it’s obvious when an object is concave or convex.

 Algorithmically, should we need to identify which of the 

two an object is, we can employ a simple rule:

 If a line is drawn through the shape, the shape is convex 

if the line has two points of intersection; if it has more, 

it is concave

 Note: The line cannot be a tangent to the object, or it will 

only have one point of intersection irrespective of the 

shape of the object.



Identifying the Difference

 A SAT-based approach cannot account for collisions 

between concave objects without significant 

extensions/additions

 BUT all concave objects can be broken down into a number 

of convex objects – consider the right-hand object below:



Identifying the Difference

 This process of decomposition into convex objects can be 

automated (for those looking for a real challenge in their 

coursework), but the process for doing so is very daunting 

to implement

 For this reason, the tutorial series assumes that any 

concave objects in your environment are manually broken 

down into constituent convex elements



Separating Axis Theorem 

in 2D



Separating Axis Theorem: 

Premise

 Separating Axis Theorem (SAT) states that:

 If two convex objects are NOT colliding, then a line (or 

plane, in 3D space) can be drawn between them which 

does not intersect with either



Separating Axis Theorem: 

Premise

 The corollary to this, and the principle our collision 

detection is based on, is that if we can find a single 

case where we can draw a line/plane between two 

shapes without intersecting either of them, we can 

prove that the two shapes do not collide



Separating Axis Theorem: 

Practise

 Let’s envision our objects as collection of lines/planes –

not hard, since that’s all anything is in a video game

 Following on from our talk about spheres intersecting 

with a plane in the last tutorial, we should be able to 

see how we can use the same check to help here

 We can achieve our intended effect by:

 Defining the ‘axes’ we wish to test

 Projecting all points of each shape along each tested axis



Separating Axis Theorem: 

Practise

 Projecting a point gives us a single value describing the 

distance of that point along the axis being tested.

 The maximum and minimum of those values defines how 

much of that axis is occupied by our object – and that 

allows us to determine if, in that axis, two objects 

overlap.

 Let’s look at an example



Separating Axis Theorem: 

Practise

 Visualise the axis we’re 

projecting against as the 

green line (the normal of 

the red line, projected 

infinitely)

 Notice the blue and 

orange lines of projection 

here – that’s the maximum 

projection of the points of 

each object along that 

axis

 There’s a gap – they don’t 

overlap in this axis, ergo 

they haven’t collided



Separating Axis Theorem: 

Practise

 We can see in this slightly 

altered image that were 

the objects actually 

colliding, there WOULD be 

overlap of their 

projections on that normal

 This also helps is get a 

better understanding of 

why we’re projecting onto 

the normal of the test axis 

in order to determine if 

the objects overlap, which 

can be counter-intuitive



Separating Axis Theorem: 

Practise

 The code to find the minimum and maximum 

projections along a vector is provided in 

SphereCollisionShape and CuboidCollisionShape

 We should pay attention to the Cuboid case during 

today’s practicals, and devote some time to 

understanding what the code is doing, as cuboids 

are the generic convex polyhedron



Separating Axis Theorem:

Practise

 Projection of point 𝑎 along axis 𝑏 is given by the 

formula

𝑝𝑟𝑜𝑗𝑎𝑏 =
𝑎 ∙ 𝑏

|𝑏|

𝑏

|𝑏|

 Normalising 𝑏 lets us substitute the equation down to

𝑝𝑟𝑜𝑗𝑎𝑏 = 𝑎 ∙ 𝑏 𝑏

 The distance of the point along the axis is the first 

term, so

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎 ∙ 𝑏



Potential Separating Axes



Potential Separating Axes:

The Problem

 We’ve now determined how SAT tells us when two 

objects haven’t collided

 But we’ve not addressed a core issue with SAT – and, 

indeed, the algorithm’s main weakness

 How on earth do we know what axes to test against?

 We can’t consider every axis, there’s potentially an 

infinite number of them…



Potential Separating Axes:

The Solution

 Thankfully, there aren’t really an infinite number of 

axes to check – because we’re dealing with polyhedral 

objects. Spheres notionally have an infinite number of 

axes to check (more on that in the next tutorial), but a 

twenty-sided die (for example) only has a finite number 

we need to consider

 We assume every object to be made up of a series of 

lines or faces – just like most objects in our game will 

be.



Potential Separating Axes:

The Solution

 This means that the number of collision points is limited 

to each flat face. (Important fact!)

 As a result, we can take the normal of the faces as 

potential collision axes.

 This can be a little counterintuitive, so let’s consider an 

example…



Potential Separating Axes:

The Solution

 The figure below shows a check between two triangles



Potential Separating Axes:

The Solution

 Let’s consider the axes in turn, as generated by the 

faces



Potential Separating Axes:

The Solution

 We’ll see there are six axes to check, one for each face



Potential Separating Axes:

The Solution

 The two objects intersect on all axes except one – e3



Potential Separating Axes:

The Solution

 As such, there has been no collision



Potential Separating Axes:

Optimisations

 Just like AABB, our SAT 

axis check can break out 

if any of its conditions 

aren’t met – e.g., the 

example before could 

have broken out at e3, 

because that proved no 

collision

 Parallel Axes don’t need 

considering (common 

sense). How many axes 

would nee considering 

for the d20?



SAT Key Feature Summary



Key Features

 If there exists an axis in which two objects do NOT 

overlap, we can prove they do not collide

 If no axis exists in which they do not overlap, we can 

safely assume that they have collided (interfaced)

 The number of possible axes to check is the same as the 

number of faces of the objects, summed

 Parallel axes can be ignored

 As all conditions must be met for confirmation of an 

axis, check can break out when any one condition isn’t 

met without checking the remainder



Generic Interface 

Detection



The problem is simple – why 

are the solutions complex?

 Let’s pause for a moment and think about the problem 

we are trying to solve

 Envision the scenario below:



The problem is simple – why 

are the solutions complex?

 Just going off what we knew yesterday of determining 

whether a point lies beneath a plane, there’s an obvious 

approach to solving this scenario.

 We’ll explore this approach over the course of the next 

few slides



The problem is simple – why 

are the solutions complex?

 So, what we need to do first is define the lines (planes, 

in three dimensions) that represent our objects.

 We do that, in this example, twelve times



The problem is simple – why 

are the solutions complex?

 By defining these planes, we obtain their normal

 And now we have the planes’ normals, we’re ready to 

actually perform our check.



The problem is simple – why 

are the solutions complex?

 We can now compare every point in the green object 

against every plane defining the red object

 If a point exists inside every plane in the red object, 

there is an interface



The problem is simple – why 

are the solutions complex?

 By using this N-squared approach, we guarantee that, for any 

object, we can determine whether or not there’s an interface

 But this is lacking the accurate collision normal – for 

collision response – which can be extracted using SAT



The problem is simple – why 

are the solutions complex?

 That is the nature of SAT – and, indeed, any algorithm, is a 

trade-off. We perform a more computationally expensive 

operation in order to obtain a more valuable result – in this 

case, data we can meaningfully employ in the final stage of 

our physics update.



The problem is simple – why 

are the solutions complex?

 This should reiterate the importance of elements like the 

broad phase culling, and the reason we use simple hulls to 

represent even complex objects in our environment



Edge Cases



What are edge cases?

 Edge cases are scenarios in which an algorithm can’t be 

applied to solve without some external reasoning.

 A simple example would be the definition of a chess 

board.

 You can define the connections of a chess board, for the 

majority of squares, as being +1 (right), -1 (left), +8 

(up), -8 (down)

 But that doesn’t take into account the board’s edges



Are edge cases a problem?

 Not really.

 They happen all the time.

 Sometimes, the solution is external reasoning about 
the scenario (i.e., If square == 1, then… If square == 9 
|| 17 || 25…)

 Sometimes, the algorithm itself can be extended to 
account for edge cases

 Where possible, employ algorithms with allowances 
for edge cases already built-in



SAT in 3D: Edge Cases



In SAT’s case, the Edge Cases 

are literally Edge Cases

 Edge-Edge Collisions

 Spheres and other curved surfaces



Edge-Edge Collisions

 Consider the scenario in three dimensions, shown below.

 Our SAT algorithm as explored in the last tutorial will 

give a false positive on this check. Here’s why…



Edge-Edge Collisions

 Note only six checks, because parallel faces

 Looking through them, we can clearly see that all of our 

face normal give a positive result for a collision: SAT 

believes these objects have collided, and we can clearly 

see they haven’t.



Edge-Edge Collisions

 This is due to the fact we’re extending logic originally 

applied in two dimensions into three dimensions

 Looking at it another way, it happens because, if we 

view our cuboids as flat objects, they actually have two 

surface areas, e.g.



Edge-Edge Collisions

 Our approach only accounts for the left-hand case. We 

need to think a little abstractly in order to account for 

this problem



Edge-Edge Collisions

 The easiest way to extend our algorithm to account for 

the problem is to take every edge of both objects, and 

cross the permutations to produce additional axes

 You’ll remember from graphics that the cross product of 

two non-parallel vectors results in a vector which is 

orthogonal (perpendicular) to both

 As such, considering Cartesian axes, 𝑥 × 𝑦 = 𝑧



Edge-Edge Collisions

 Taking the cross-product of an edge on Object 1 and an 

edge on Object 2 will generate a new axis which is 

perpendicular to both of these edges, and thus define a 

new plane in which the two objects might not overlap

 You’ll note in the framework that we’ve added a check 

which prevents permutations being considered more 

than once – that’s because we’ve now got quite a few 

more planes to compare against – removing duplicates 

saves us processing time – if we didn’t, the above 

example would give us 64 new planes to consider

 This addresses our first edge case



Spheres and Curved Surfaces

 As discussed yesterday, spheres are the only object 

which guarantee a single point of contact with another 

convex hull

 That’s fine, except spheres also have an infinite number 

of faces.

 Since our SAT-based system is based on face count, how 

are we meant to resolve this?



Spheres and Curved Surfaces

 Consider the scenario below



Spheres and Curved Surfaces

 In the sphere-sphere case, determining the ‘face’ we 

ought to be checking is actually fairly trivial – it’s the 

vector between the centres of the spheres – we can see 

why…



Spheres and Curved Surfaces

 This isn’t always the case for sphere-polygon, however –

let’s have a look at an example of that situation.



Spheres and Curved Surfaces

 Here, we need to determine the closest point of Object 

2 to the sphere. We iterate through each face of the 

polygon, to deduce which point of the polygon is closest 

to the sphere based on the normal of that face



Spheres and Curved Surfaces

 The code to perform this check is provided for you to 

integrate into your framework



Summary

 Discussed Broadphase approaches and the differences 

between Broad and Narrow phases

 Discussed SAT in the context of interface detection

 Outlined the way SAT works

 Highlighted ways to optimise an SAT-based check

 Discussed collision detection algorithms in a general 

sense

 Highlighted the importance of algorithmic edge cases

 Addressed key edge cases which apply to SAT in three 

dimensions



Implementation

 Check the Tasks handout for today

 Have some fun with object representation


