
Physics Tutorial 2: 

Numerical Integration



Housekeeping

 Aardvark Swift competitions (Search for a Star, etc.) are 

now open and taking applications

 http://gradsingames.com/competitions/

 If you’re interested, go for it!

http://gradsingames.com/competitions/


Housekeeping

 Reminder, 2 lectures today

 Second is at 13:00

 Immediately followed by the practical until 16:00

 One lecture tomorrow, 10:00am



New Concepts

 Moving Objects in Physics Engine

 Integration Refresher

 Linear Motion

 Angular Motion

 Numerical Integration

 Integration Methods

 Euler

 Verlet

 RK2

 Implementation



Moving Objects with our

Physics Engine

 We recall from the previous tutorial that the first thing 

our physics engine should be capable of doing is 

updating our object’s physical location

 In amongst that, we include our object’s physical 

orientation

 We emphasised the importance of applied forces to 

compute both of these characteristics

 But how do we take force and convert it into motion?



Moving Objects with our

Physics Engine

 Force is the product of mass and acceleration. Its units, 

therefor, are 𝑘𝑔𝑚𝑠−2 or 𝑘𝑔 ∙
𝑚

𝑠2
- kilogram-metres, per 

second squared.

 You’ll often hear physicists or other scientists use 

“metres per second per second” when describing 

acceleration, instead of “per second squared”

 This is to emphasise that acceleration is a change of a 

variable in time (that variable being velocity which is, 

itself, a change of a variable in time)

 As a result, time lies at the heart of our entire physics 

simulation



Moving Objects with our

Physics Engine

 Time is an analogue concept – it isn’t digital, or 

discrete. By its nature, time is a continuum

 But we’re working on a digital medium, and everything 

we do with the computer has to be discrete

 In other words, before we can decide how our system 

will react to the passage of time, we have to decide 

just how our system will represent the passage of time



Moving Objects with our

Physics Engine

 We’ll cover just how we actually do this later in the 

lecture – but you should keep it in your mind while we 

discuss the concepts we’re about to address.

 Calculus, yay!

 Specifically, we cover integration. This is because our 

system is based around force and, as such, acceleration 

– meaning that we’re moving inwards towards position. 

 If, for some crazy reason, our system were computing 

acceleration reactively based on change in position, 

we’d differentiate, instead.



A note on Inverse Mass

 You’ll notice in the Physics Framework that we store a 
property of an object called m_InvMass and multiply 

by it whenever converting a force into an acceleration

 This is, as the sharp-eyed amongst you have already 

gleaned, the inverse mass of the object (e.g., 
1

𝑚
)

 We do this for efficiency’s sake. Multiplication takes 

approximately half as long as division in cycles – so by 
computing m_InvMass when we first create an object, 

and multiplying it by force to obtain acceleration, we 

half the amount of time we spend computing 

acceleration



Integration Refresher



Integration Overview

 Integration is the process by which we compute how 

much a variable has changed, based on its rate of 

change and the passage of time

 For example, someone earns £250 per week:



𝑑£

𝑑𝑡
= 250 where 𝑑𝑡 = one week

 Integrating this very simple example means that, 

assuming they start with £0, after four weeks they have 

£1000 (
𝑑£

𝑑𝑡
∙ 𝑑𝑡 = 200 × 4)

 How much do they have after 3.5 weeks? Depends on 

whether or not our system is continuous or discrete



Linear Motion

 The process for resolving linear motion on an object is 

relatively straightforward:

 Resolve all forces acting on the object into a single force 

(𝐹𝑇𝑜𝑡𝑎𝑙 = 𝐹1 + 𝐹2 +⋯+ 𝐹𝑁)

 Calculate the object’s acceleration (𝐹 = 𝑚𝑎)

 Integrate acceleration over time to obtain velocity

 Integrate velocity over time to obtain position



Linear Motion

 Velocity is rate of 

change of displacement 

over time:

𝑣 =
𝑑𝑠

𝑑𝑡

 As such, displacement is 

obtained by integrating 

velocity with respect to 

time:

𝑠 = න𝑣. 𝑑𝑡

 Acceleration is rate of 

change of velocity over 

time:

𝑎 =
𝑑𝑣

𝑑𝑡

 As such, velocity is 

obtained by integrating 

acceleration with 

respect to time:

𝑣 = න𝑎. 𝑑𝑡



Linear Motion

 Consider the figure below

 This illustrates how the three variables interact with 

one another



Angular Motion

 The process for resolving angular motion on an object is 
also relatively straightforward:

 Option A: Resolve the net torque acting on an object 
(this is a bit more complex than net force, and is often 
overlooked as a result)

 Option B: Handle each torque independently, and it’ll 
come out in the wash

 Calculate the acceleration from (𝜏 = 𝐼𝛼)

 Integrate angular acceleration over time to obtain 
angular velocity

 Orientation needs special care when handled in this 
manner, see lecture notes for more detail



Numerical Integration



Wibbly Wobbly

Timey Wimey Stuff

 Promised we’d revisit the question of ‘time’.

 So, because physics in the real world is a continuous 

process with no discernible discrete interval.

 If it makes you feel better, the smallest recognised unit 

of time (Planck time), is of the order of a few billion 

times smaller than the smallest duration technology can 

detect (and may ever be able to detect: see 

Uncertainty)



Wibbly Wobbly

Timey Wimey Stuff

 We can’t model things in Planck time (~1.85 × 1043fps)

 Instead, we fix on a time step which will define a 

discrete interval between updates of our system 

(normally ~120fps for a physics engine). We call this the 

time step, and (as in graphics) we refer to a specific 

time step (𝑡𝑛) as a frame

 The problem with this approach is that it inherently 

introduces errors…



Wibbly Wobbly

Timey Wimey Stuff

 Consider the diagram below. This outlines in simple 

terms the displacement of an object over time, moving 

at a constant velocity:

𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛∆𝑡



Wibbly Wobbly

Timey Wimey Stuff

 The error comes in the form of unpredictability. What 

happens if 𝑣 suddenly changes between 𝑡𝑛 and 𝑡𝑛+1?

 This is compounded by the fact that our answer for the 

object’s position at 𝑡𝑛+2 is predicated on the result for 

𝑠𝑛+1.

 The concept of the time series comes from here. The 

time series is the record of an object’s state (in our 

diagram, its displacement 𝑠)

 Because 𝑠𝑛 is predicated on the result 𝑠𝑛−1, for all 

values of 𝑛 above 0, we consider this process to be 

iterative



Wibbly Wobbly

Timey Wimey Stuff
 We can reduce the error creeping into our system over 

time by minimising our time step – in many ways, 
continued development of swifter algorithms to handle 
physical computation is directly related to this

 But we can’t get rid of it – our system will always be 
spiralling away from accuracy

 It doesn’t matter, though – so long as our system is 
stable (doesn’t explode) and believable to the player, 
it’s doing its job

 Different numerical integration techniques can help 
maintain the stability of our system over large numbers 
of updates, and potentially indefinitely

 Consider a level of a first-person shooter: if the physics 
system performs 120 updates per second, and the level 
takes 20 minutes to complete, the physics system 
needs to be stable for 144,000 updates



Numerical Integration 

Algorithms

 Explicit Euler Integration

 Implicit Euler Integration

 Semi-implicit (or Symplectic) Euler Integration

 Second Order

 Verlet Integration

 RK2



Explicit Euler Integration

 Uses the current frame’s 
values for velocity and 
acceleration to compute 
the next frame’s 
displacement and velocity

 Very quick, with minimal 
thought required to 
implement

 This tends to be the 
example used when first 
explaining numerical 
integration for that very 
reason

 Highly unstable for larger 
time steps

 Only really useful for 
scenarios where updates 
will occur very quickly as 
a result

 There are better (more 
stable) approaches that 
have a similar number of 
operations per object per 
update

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡
𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛∆𝑡



Implicit (Backward)

Euler Integration

 Uses the next frame’s 
value for acceleration to 
compute the next frame’s 
value for velocity, and 
that velocity to update 
displacement

 Very stable, as 
consideration of future 
events reduces error

 This tends to be used in 
highly predictable 
systems, or systems which 
don’t need to operate in 
real time

 Computationally 
expensive to work out 
next frame’s acceleration 
(as forces need 
predicting, and forces can 
be a function of predicted 
movement)

 Not really appropriate for 
gaming scenarios due to 
computational expense

 Player actions can be 
highly unpredictable, 
making estimation of 
future acceleration 
difficult

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛+1∆𝑡
𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛+1∆𝑡



Semi-Implicit (Symplectic)

Euler Integration

 Uses the current frame’s 
value for acceleration to 
compute the next frame’s 
value for velocity, and 
that velocity to update 
displacement

 Very stable

 Same speed as Explicit –
just need to ensure the 
computations are 
performed in the right 
order (update velocity, 
then use new velocity to 
update displacement).

 Has a silly name

 That’s about it for down 
sides

 It isn’t as stable as fully 
implicit, but due to its 
speed and stability it sees 
a lot of use

 Ordering of the equations 
is vital

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡
𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛+1∆𝑡



Verlet Integration

 Begin with semi-implicit equations:

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡
𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛+1∆𝑡

 Substitute in 𝑣𝑛+1 to get:

𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛 + 𝑎𝑛∆𝑡 ∆𝑡

 Which rearranges to:

𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛∆𝑡 + 𝑎𝑛∆𝑡
2

 If:

𝑣𝑛 =
𝑠𝑛 − 𝑠𝑛−1

∆𝑡

 Then:

 𝑠𝑛+1 = 𝑠𝑛 + 𝑠𝑛 − 𝑠𝑛−1 + 𝑎𝑛∆𝑡
2 = 𝟐𝒔𝒏 − 𝒔𝒏−𝟏 + 𝒂𝒏∆𝒕

𝟐



Verlet Integration

 This is a very stable 

solution

 About as many 

operations as 

Explicit/Symplectic

 Reversible in time

 Doesn’t rely explicitly 

on velocity

 Neatly applicable to 

GPU computation

 Complex to implement 

properly – requires more 

thought than other 

methods

 Requires start conditions 

to be set up prior to 

updating, since it has to 

look back in time

𝑠𝑛+1 = 2𝑠𝑛 − 𝑠𝑛−1 + 𝑎𝑛∆𝑡
2



Runge-Kutta “Midpoint”

 In Euler integration, we assume everything is constant 

between time t and time t + 1.

 Our simulation is more accurate if we don’t!

 Under changing forces, an object’s acceleration might 

change over the course of a time-step

 Under constant acceleration, velocity changes over 

the course of a time-step



Runge-Kutta “Midpoint”

 If we know how the variables are changing, and have a 

quick way to guess how they’re changing

 AND we have spare processor cycles

 We can substitute in a mid-point value for the changed 

variable, for a closer-to-accurate result.

 For example:

𝑠𝑡+1 = 𝑠𝑡 + ((𝑣𝑡 + 𝑣𝑡+0.5)∆𝑡 × 0.5)



More Advanced Numerical 

Integration

 Solving differential equations

 Runge Kutta (RK4)



Summary

 Calculus, calculus, and more calculus

 The theories underpinning numerical integration

 Several numerical integration algorithms

 Extension to angular motion from linear motion



Implementation

 See first couple of tasks on the Practical Tasks hand out 

for today

 Have some fun with it!


