
Physics Tutorial 3:

Constraints

New Concepts

 Simple interfaces

 Constraints in 1 Dimension

 Constraints in 3 Dimensions

 Adding Energy to the System

 Calculating Lambda

 Updating Object Velocity

What is interface detection?

 We want to know if the region defined by one shape

overlaps with a region defined by another

 There are several simple algorithms which determine

this

 If we say that this cannot occur, then we are applying a

constraint to the system

Collision Detection: Overview

 Collision detection, or interface

detection/determination, is the second step of our

physics loop

 We’ve moved our objects at this point (Yay, Newton!)

 What we need to know is whether or not we’ve moved

them into an invalid configuration

Collision Detection: Overview

 Think about our Constraint-based approach again – we’re

saying “These are things you can’t do, and so long as you

don’t do them you’re fine”.

 An invalid configuration is essentially breaking one of those

rules – we’re doing something that we’ve explicitly said we

can’t.

 And pretty much every case of this involves the intersection

of objects – a collision. We know that can’t happen in the

real world, because we don’t interpenetrate with our chair

when we sit on it

Collision Detection: Overview

 Identifying these intersections is formally known as

‘interface detection’, and it has application far beyond

video games

 The problem itself is one that, on the face of it, looks

really simple – it’s a binary, something either does overlap,

or it doesn’t – but computationally it’s far more complex

than that

 Part of the reason for that complexity is that we don’t just

need to know if objects have interfaced; we need to

extract enough information about the interface to

accurately ‘un-make’ it.

Collision Detection:

The Question

 So, moving away from the general description of the

problem, what’s the real condition we’re checking?

 Given two shapes, A and B, is there any point on the

surface of A which exists inside the region defined by B?

A B

Collision Detection:

The Question

 So, moving away from the general description of the

problem, what’s the real condition we’re checking?

 Given two shapes, A and B, is there any point on the

surface of A which exists inside the region defined by B?

 If TRUE, COLLISION DETECTED

Collision Detection:

The Question

 So, moving away from the general description of the

problem, what’s the real condition we’re checking?

 Given two shapes, A and B, is there any point on the

surface of A which exists inside the region defined by B?

 If FALSE, COLLISION NOT DETECTED

Collision Detection:

The Question

 Looking at these examples, it should begin to get a little

clearer as to how guaranteeing FALSE is the case might

be easier than computing TRUE

Another reason for exclusion

rather than inclusion

 Extracting collision data

 Why this is important will become clear

 For now, just need to remember that the data exists

 Will be used to help satisfy our constraint – e.g., resolve

a collision

Collision Data to Permit

Resolution

 For many of the simple algorithms we present today,

three bits of data need extracting from the collision in

order to resolve it.

 Consider the figure below:

Collision Data to Permit

Resolution
 The Contact Point P indicates the point where the

intersection has been detected

 N is the collision normal – the direction along with the

intersecting object must move to resolve the collision

 p is the penetration depth – the distance along N we

need to move to resolve the collision

Collision Data to Permit

Resolution
 It is crucial to note that for many collisions, when

resolved by our advanced narrow phase algorithms, we

must maintain a collision MANIFOLD, not a collision

point. That will be the subject of a later tutorial.

Sphere-Sphere Collision

 Consider again what collision detection is meant to

determine.

 Does there exist a point on the surface of Object A

which can be found within the volume defined by

Object B?

 The sphere-sphere case is probably the simplest such

check

Sphere-Sphere Collision

 Consider the following scenario:

Sphere-Sphere Collision

 Let 𝑑 be the distance between the centres of our spheres

 Our collision condition must be true if

𝑑 < 𝑟1 + 𝑟2

Sphere-Sphere Collision

 This is because 𝑟1 + 𝑟2 is, logically, the smallest distance

the centres of the spheres can lie apart without interfacing

 What does this algorithm become if 𝑟2 = 0?

Sphere-Sphere Collision

 For this collision type, our collision data is determined

as follows:

𝑝 = 𝑟1 + 𝑟2 − 𝑑
𝑁 = |𝑆1 − 𝑆2|

𝑃 = 𝑆1 − 𝑁 𝑟1 − 𝑝

 Note that spheres are the only objects (with volume)

which can collide and guarantee only one contact point

Axis-Aligned Bounding Box

Collision Check

 Axis-Aligned Bounding Box (AABB) checks are a very

straightforward method of determining if objects have

the possibility of collision

 AABBs are normally employed solely in broad phase

checks, as the algorithm does not provide collision data

 Limited by the fact that the box has to be axis-aligned –

can’t be object aligned. As such, objects represented by

AABBs can require their AABBs to be dynamically

resized.

Axis-Aligned Bounding Box

Collision Check

 Interface has occurred if ALL THREE conditions are met:

𝑥2 − 𝑥1 < 1
2 𝑤1+𝑤2

𝑦2 − 𝑦1 < 1
2 ℎ1+ℎ2

𝑧2 − 𝑧1 < 1
2 𝑙1+𝑙2

Axis-Aligned Bounding Box

Collision Check

 Note, the algorithm can be made more efficient by

breaking out early with a return of FALSE if any of the

conditions AREN’T met, without computing the

subsequent ones

Sphere-Plane Collision

 This mode of detection is based on the plane equation

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

 Where (𝐴, 𝐵, 𝐶) is the normal to the plane, 𝐷 is the

distance of the plane from the origin (0,0,0), and

(𝑥, 𝑦, 𝑧) is the position of the test point

 So, in the case of our sphere, the test point would be

the point on its surface which is closest to the plane

Sphere-Plane Collision

 We can rationalise out a lot of what happens in this situation

– consider the scenario below:

Sphere-Plane Collision

 The contact normal will always be the normal of the plane,

no matter how our sphere has intersected with it – e.g., 𝑁 =
(𝑥, 𝑦, 𝑧)

Sphere-Plane Collision

 The contact normal will always be the normal of the plane,

no matter how our sphere has intersected with it – e.g.,

𝑁 = (𝑥, 𝑦, 𝑧)

Sphere-Plane Collision

 𝐷 is the distance of the plane from the origin, ergo an

interface has occurred if the sphere has position 𝑆 such that

𝑁 ∙ 𝑆 − 𝐷 < 𝑟

Sphere-Plane Collision

 Remembering that 𝑁 = (𝑥, 𝑦, 𝑧), remaining collision data

is computed:

𝑝 = 𝑟 − 𝑁 ∙ 𝑆 − 𝑑

𝑃 = 𝑆 − 𝑁(𝑟 − 𝑝)

The Simple 1D Problem
(‘Simple’ being a relative term)

A note on

Partial Differentiation

 You’ll have noticed that some of the hand-outs which

discuss this work have used a 𝜕 notation (i.e.,
𝜕𝐶

𝜕𝑥
)

 This notation indicates a ‘partial derivative’

 Sure, I’m partial to derivatives, too – if I weren’t, I’d

not be doing this job - but what does it actually mean?

A note on

Partial Differentiation

 Imagine a function of multiple variables – fluid motion is

a good example.

 You have to consider density of the fluid, flow velocity,

pressure, etc. – all of these are interconnected in terms

of how the fluid moves, and changing one impacts all

 The problem here is identifying how changing just one

variable affects the collective system.

 Remembering that we’re considering an instant in time

when we take a gradiant (differentiate), partial

differentiation is basically extending the idea that “if

we change one variable, the other variables can be

treat as constant for that instant.

 They won’t have had ‘time’ to change

A note on

Partial Differentiation

 This is a slight oversimplification, but it gets the

premise across – where we see 𝜕𝐶 divided by

𝜕𝑊ℎ𝑎𝑡𝑒𝑣𝑒𝑟, we mean we’re only changing 𝑊ℎ𝑎𝑡𝑒𝑣𝑒𝑟
and every other element of 𝐶 isn’t changing

 An arbitrary example would be some function 𝑓, where

𝑓 𝑥, 𝑦, 𝑧

 In this scenario
𝜕𝑓

𝜕𝑥
is the change in 𝑓 calculated

assuming that 𝑦 and 𝑧 don’t change

A note on

Partial Differentiation

 Another notation we might come across from time to

time, especially if we’re interested in fluid dynamics, is

𝛻𝑊ℎ𝑎𝑡𝑒𝑣𝑒𝑟.

 This is ‘del’ notation, represented normally using the

nabla (𝛻) symbol, and represents the vector differential

operator

 In real terms, all this means is the collective partial

differentials of every variable in a system.

A note on

Partial Differentiation

 So, in Cartesian space, 𝛻 can be written

𝛻 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

 Again, we’re simplifying slightly, but not by that much.

 The important thing to take away from this is that if we

want to program physics simulations, we’ll be faced

from time to time with maths which is new to us.

 That maths is very rarely beyond our ability to

comprehend, so we shouldn’t be disheartened

encountering it.

So, the 1D Problem

 Consider a simple constraint, restricted to a single axis.

 We have variables 𝑥 and 𝑦, which are positions (values,

really, in 1D – e.g., 2 and 7 along a number line)

 We define our constraint 𝐶 as requiring that the

distance between 𝑥 and 𝑦 shall always be 𝐿

𝐶 𝑥, 𝑦 = 1
2 𝑥 − 𝑦 2 − 𝐿2

So, the 1D Problem

𝐶 𝑥, 𝑦 = 1
2 𝑥 − 𝑦 2 − 𝐿2

 We differentiate 𝐶 with respect to time in order to

determine how it’s changing (just as in this morning’s

notes). This requires us to use that partial

differentiation notation we just discussed, because 𝐶 is

a function of both 𝑥 and 𝑦.

 We use something called the chain rule (we won’t go

into the whys and wherefores of this, but it’s results

should look fairly intuitive – see Tutorial 3):

𝑑𝐶

𝑑𝑡
=

𝜕𝐶

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝐶

𝜕𝑦

𝑑𝑦

𝑑𝑡

So, the 1D Problem

𝑑𝐶

𝑑𝑡
=

𝜕𝐶

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝐶

𝜕𝑦

𝑑𝑦

𝑑𝑡

 In dot notation,
𝑑𝑥

𝑑𝑡
and

𝑑𝑦

𝑑𝑡
are referred to as ሶ𝑥 and ሶ𝑦,

respectively

 In real terms, they represent the change in time of a

point – which, we recall from this morning, makes them

elements of our Vector 𝐕

 From our original function, we can determine that
𝜕𝐶

𝜕𝑥
= 𝑥 − 𝑦

𝜕𝐶

𝜕𝑦
= (−1)(𝑥 − 𝑦)

So, the 1D Problem

𝜕𝐶

𝜕𝑥
= 𝑥 − 𝑦

𝜕𝐶

𝜕𝑦
= −1 𝑥 − 𝑦 = 𝑦 − 𝑥

 By simple rearrangement, this gives us

ሶ𝐶 = 𝑥 − 𝑦 ሶ𝑥 + −1 𝑥 − 𝑦 ሶ𝑦

 Going back to ሶ𝐶 = 𝐉𝐕, bearing in mind that 𝐕 =
ሶ𝑥
ሶ𝑦

, we

can set our Jacobian to have the form

𝐉 = 𝑥 − 𝑦 𝑦 − 𝑥

So, the 1D Problem

𝐉 = 𝑥 − 𝑦 𝑦 − 𝑥

 From this morning, we know that

𝐅 = 𝐉𝑇λ

 Where 𝐅 is the Constraint Force, 𝐉𝑇 is the transpose of

the Jacobian, and λ is our change. Transposing our

Jacobian just means reflecting it along the diagonal:

𝐉 = 𝑥 − 𝑦 𝑦 − 𝑥 ergo 𝐉𝑇 =
𝑥 − 𝑦
𝑦 − 𝑥

So, the 1D Problem

Thus 𝐅 =
𝑥 − 𝑦
𝑦 − 𝑥 λ for some value λ

 Note that the force is proportional to the distance

between the points 𝑥 and 𝑦, but equal and opposite for

each object (Newton’s Third Law)

Expanding this to 3D

 Consider this example. Two boxes are connected by a

distance constraint at 𝐱𝟏 and 𝐱𝟐, where these are three-

element vectors denoting positions

Expanding this to 3D

 In-keeping with our 1D example, we define this

constraint as

C 𝐱𝟏, 𝐪𝟏, 𝐱𝟐, 𝐪𝟐 =
1

2
𝐱𝟐−𝐱𝟏

2−𝐿2

where 𝐱 denotes a position and 𝐪 an orientation

 Differentiating 𝐱𝟏 and 𝐱𝟐 is a complicated prospect at

first sight, factoring in rotation, so we redefine them as

vectors from their centre of rotation, e.g. 𝐱𝟏 = 𝐩𝟏 + 𝐫𝟏

 From this, we differentiate with respect to time,

getting a velocity, and the product of an angular

velocity with our vector from centre of rotation:

𝑑𝐱𝟏
𝑑𝑡

= 𝐯𝟏 + 𝜔𝟏 × 𝐫𝟏
𝑑𝐱𝟐
𝑑𝑡

= 𝐯𝟐 + 𝜔𝟐 × 𝐫𝟐

Expanding this to 3D

 We recall from the 1D example that

𝑑𝐶

𝑑𝑡
=

𝜕𝐶

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝐶

𝜕𝑦

𝑑𝑦

𝑑𝑡
→
𝑑𝐶

𝑑𝑡
=

𝜕𝐶

𝜕𝐱1

𝑑𝐱1
𝑑𝑡

+
𝜕𝐶

𝜕𝐱2

𝑑𝐱2
𝑑𝑡

 Subbing in the results from earlier, we’re left with

ሶC = 𝐱2 − 𝐱1 ∙ 𝐯2 + 𝜔2 × 𝐫2 − 𝐯1 + 𝜔1 × 𝐫1

 Which can be simplified down (since 𝐱2 − 𝐱1 = 𝐝, as per the

diagram) and the vector identity in the handout giving:

ሶC = −𝐝 ∙ 𝐯1 − 𝐫1 × 𝐝 ∙ 𝜔1 + 𝐝 ∙ 𝐯2 + 𝐫2 × 𝐝 ∙ 𝜔2

Expanding this to 3D

ሶC = −𝐝 ∙ 𝐯1 − 𝐫1 × 𝐝 ∙ 𝜔1 + 𝐝 ∙ 𝐯2 + 𝐫2 × 𝐝 ∙ 𝜔2

 So, this looks a little meaningless until we remember that

our Jacobian is meant to be coefficients of our linear and

angular velocities – one of each, for each constrained

object. From Tutorial 3’s handout,

ሶC = 𝐣1 ∙ 𝐯1 + 𝐣2 ∙ 𝜔1 + 𝐣3 ∙ 𝐯2 + 𝐣4 ∙ 𝜔2

 Transposing out, and substituting the ሶ𝐶 = 𝐉𝐕 form again, we

wind up with

𝐉 = −𝐝𝑇 − 𝐫1 × 𝐝 𝑇 𝐝𝑇 𝐫2 × 𝐝 𝑇

Adding Energy and

Corrections/Damping

 So far, focus has been on constraints which add no
energy to the system, or

ሶC = 0

 We can easily envision a scenario in our game where we
want a constraint to add energy to the system.

 A drive train, for example, which introduces energy to
the environment without us having to do all of the
energetic and mechanical computations involved in the
internal combustion engine.

Adding Energy and

Corrections/Damping

 In such situations, we simply define a vector function,

e.g., ζ, and set ሶC = ζ

 This is known as a bias vector, and can relate to

position, angle, and time.

 Intuitively, we can also introduce a bias vector to take

energy out of the system.

 This is one way of dealing with the errors inherent to

our iterative update process

Practical Computation of

Velocity Update

Overview

 For the remainder of this lecture, we’ll explore what all

of this maths actually means for our software

 We’ll consider an example constraint scenario, and step

through the elements of code which resolve it

 The important thing to remember is that the purpose of

the distance constraint is to ensure that both entities

about the constraint maintain relative distance; as

such, we are ensuring that the velocities about the

direction of the constraint remain identical.

The Scenario

 Objects A and B are connected by a distance constraint
between the grey triangles

 pA and pB represent respective centres of mass

 r1 and r2 are vectors connecting those CoMs to
respective triangles

 x is the unit vector in the direction of the constraint

The Jacobian

The Jacobian

The Jacobian

The Jacobian

𝐉 =

𝐯1
𝜔1
𝐯2
𝜔2

The Jacobian

ሶC = 𝐉𝐕
= −𝛽C

The Jacobian

The Jacobian

 Now we have j1, j2, j3 and j4, everything we do in

terms of operations will refer to these elements – it’s

the entire point of computing the Jacobian in the first

place

Constraint Mass

 We define this as a float (scalar), and compute it as follows:

 We leverage inverse mass and inverse inertia of each object

in turn.

 Notice that we’re basically gathering magnitudes, either

multiplying by dotted vectors, or dotting vectors against the

vector product of matrix multiplication

 You can see how these map to the properties obtained

previously – inverse mass of Object A to linear Jacobian

component for Object A, and so forth

Differentiated Constraint (ሶC)

ሶC = 𝐉𝐕

 This one really is what it says on the tin…

Compute Lambda

 We notionally have a 𝛽, but it’s set to 0.0f

 Lambda is the negative of cee-dot, over the constraint mass

(so, basically, the last two steps divided)

Update Velocity

 We recall that

𝐅 = 𝐉𝑇λ

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡 𝑎 =
𝐹

𝑚

 At this point, we’re functionally integrating to obtain the

new velocity components based on our constraint

Update Velocity

 We recall that

𝐅 = 𝐉𝑇λ

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡 𝑎 =
𝐹

𝑚

 At this point, we’re functionally integrating to obtain the

new velocity components based on our constraint

Update Velocity

 We recall that

𝐅 = 𝐉𝑇λ

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡 𝑎 =
𝐹

𝑚

 At this point, we’re functionally integrating to obtain the

new velocity components based on our constraint

Within the Framework

 This simplifies down… Check out the code to see how.

Summary

 Reviewed constraints in 1D and extended that into 3D

 Discussed introducing energy to our system

 Stepped through the implementation of a solver

 Touched on Global Solvers

