
Physics Tutorial 4:

Collision Detection

New Concepts

 Broad Phase and Narrow Phase

 Convex and Concave Shapes

 Generic Collision Detection Algorithms

 Separating Axis Theorem

The Broad Phase

and the Narrow Phase

Broad Phase Premise

 Vast majority of our objects will not be colliding –

common sense

 Vast majority of our objects are of a size and location

which means it isn’t even remotely possible they’re

colliding

 What we need to do is find a quick way of sorting

through collision-capable objects in our environment, to

ensure that as many of the can’t-collides as possible are

pruned before we get to the narrow phase can-collide

checks

Broad Phase Premise

 Somewhat analogous to frustum culling in graphics

 We’d NEVER use frustum culling for physics

 Because whether or not objects collide can be really,

really important (‘falling through the floor’ important)

whether or not we’re looking at them

 And, if we were making a game based on the Dr Who

episode “Blink”, doubly so

Broad Phase Premise

 What would happen if we didn’t perform collision

checks until objects were in view?

 Consider:

 A load of objects are overlapping by a considerable margin

(not the small margins we deal with normally)

 We turn and bring them into view

 Collision response kicks in

 The world EXPLODES

 Reason for this is our constraint-based system – it reacts

based on the idea that a change has occurred over a

single time step. It will assume that this massive

overlap is the function of a single time step

Broad Phase Premise

 Simple but effective approach is to compare bounding

boxes, spheres or capsules around objects

 These checks are cheap (more on that later!)

 They cull collision pairs that definitely can’t happen

 While the checks are cheap per pair, relative to a

complicated narrow phase check, they’re still being

applied to a 𝑁2 problem, where 𝑁 is the number of

collisionable objects in our environment.

 It is far more efficient to group nearby agents together

somehow, to ensure that objects on the left hand side

of a game map aren’t compared against objects

opposite (i.e., 𝑘 × 𝑛2, where 𝑘𝑛 = 𝑁)

BSP Trees and

World Space Partitioning

 If we know objects in our environment are going to be

reasonably ‘normally’ distributed – an even distribution

throughout the game world – we can use a fixed

partitioning of our world space.

 This is also appropriate for certain checks, even if we’re

employing more advanced techniques for other, mobile

objects (if, for example, our environment has lots of

stationary but complex colliders)

 Fixed world space partitioning is trivially easy to

implement, so long as you keep in mind that objects

might be occupying more than one region

BSP Trees and

World Space Partitioning

 Problem with fixed world space partitioning is that if

the environment is highly dynamic it can be worse than

doing nothing

 Because all of our entities might end up in one defined

‘region’, all we’re doing is making things MORE

expensive, not less, because we’re adding a sorting

algorithm which doesn’t reduce our problem at all.

 There has to be a better way…

BSP Trees and

World Space Partitioning

 All we are saying, is give Octrees a chance…

 A more versatile approach, and one favoured in

industry, is binary search tree based partitioning

 Recursively subdivides the world based on occupancy of

regions

 So no region contains more than a set maximum number

of entities, however those entities may be divided

throughout the environment

BSP Trees and

World Space Partitioning

 Not a perfect solution

 Can be tricky to implement

 Can be too recursive, if objects are very strongly

clustered

 Scale can be an issue, with bigger objects occupying

several regions at once if present in an environment

with many smaller objects

 All that said, very powerful performance enhancement

to our physics system

Sort and Sweep

 Essentially this algorithm can be bolted on to any broad

phase checks

 Sorts the entities along one axis, based on the positions

of their bounding volumes

 Works from one end of the axis to the other, dropping

items from comparisons as we move beyond their

furthest point along the axis.

 See the handout for more details

Broad Phase as a Hierarchy

 Once we’ve sorted our environment to minimise the

number of bounding volume checks (those bounding

box/sphere/capsule based checks we mentioned

earlier), we need to actually check those.

 Object pairs that are still possibly colliding after –those-

checks, are passed on to the narrow phase

 In that sense, the broad phase can be considered

somewhat hierarchical. At the highest level, we’re

sorting objects by spatial location. At the lowest, we’re

performing cheap checks on over-estimated volumes

which allow us to prune the list still further.

 The algorithms from yesterday can help here!

Narrow Phase as a Hierarchy

 The same in part is true of narrow phase – there’s some
blurrioscity. We can use equations which are capable of
providing narrowphase collision resolution data as
broadphase culling checks.

 We can perform, if we want, simple collision checks not
dissimilar to their broad phase counterparts – in many
cases, these will provide enough useful data to resolve
collisions believably

 For objects where that really isn’t feasible/appropriate,
we have more advanced checks which can be made (and
will be the subject of today’s lecture)

Narrow Phase Checking

A Note on Collision/Interface

Detection and SAT

 At this point, having covered broad phase collision

checks, and some simple algorithms which might handle

trivial objects at narrow phase, we are moving into the

area of narrow phase proper

 We’re reminded of how we’re defining collision:

 If there exists a point on the surface of object A which

lies within the volume defined by object B, objects A

and B have interfaced/collided

A Note on Collision/Interface

Detection and SAT

 There are, quite literally, hundreds of algorithms which

address this problem.

 It’s one of those cases in computing where there’s not

really a single ‘right answer’

 The most popular algorithms for interface detection in

real-time are generally accepted to be the Lin-Canny

algorithm (basis of I-Collide) and the GJK algorithm.

A Note on Collision/Interface

Detection and SAT

 The obvious question at this point is “Why learn SAT,

then, instead of Lin-Canny/GJK?”

 The answer is two-fold.

 First, SAT is as much as anything a learning tool which

permits the programmer to visualise the problem, and

to visualise each step they take in solving it.

 As you’ll see today, the process we go through in solving

a problem through SAT is intuitive (if anything in

geometry is intuitive)

A Note on Collision/Interface

Detection and SAT

 It’s important that the process be intuitive because

we’re using the algorithm as a learning tool.

 If the process were more abstract, it’d be harder to

learn anything meaningful about what the geometry is

actually doing.

 The other reason is that it’s more straightforward for

you to implement than many other available algorithms.

You only have two and a half weeks to get the

coursework done – you don’t want to spend all of that

time encoding a physics system without any clue if it’s

going to work correctly at the end of the day

Convex and

Concave Shapes

Concave

 You should recall from high school that a concave shape

is one which has a hollow, e.g.

Convex

 By contrast, a convex shape is any shape which is not

concave – i.e., a shape which does not have a hollow:

Identifying the Difference

 Visually, it’s obvious when an object is concave or convex.

 Algorithmically, should we need to identify which of the

two an object is, we can employ a simple rule:

 If a line is drawn through the shape, the shape is convex

if the line has two points of intersection; if it has more,

it is concave

 Note: The line cannot be a tangent to the object, or it will

only have one point of intersection irrespective of the

shape of the object.

Identifying the Difference

 A SAT-based approach cannot account for collisions

between concave objects without significant

extensions/additions

 BUT all concave objects can be broken down into a number

of convex objects – consider the right-hand object below:

Identifying the Difference

 This process of decomposition into convex objects can be

automated (for those looking for a real challenge in their

coursework), but the process for doing so is very daunting

to implement

 For this reason, the tutorial series assumes that any

concave objects in your environment are manually broken

down into constituent convex elements

Separating Axis Theorem

in 2D

Separating Axis Theorem:

Premise

 Separating Axis Theorem (SAT) states that:

 If two convex objects are NOT colliding, then a line (or

plane, in 3D space) can be drawn between them which

does not intersect with either

Separating Axis Theorem:

Premise

 The corollary to this, and the principle our collision

detection is based on, is that if we can find a single

case where we can draw a line/plane between two

shapes without intersecting either of them, we can

prove that the two shapes do not collide

Separating Axis Theorem:

Practise

 Let’s envision our objects as collection of lines/planes –

not hard, since that’s all anything is in a video game

 Following on from our talk about spheres intersecting

with a plane in the last tutorial, we should be able to

see how we can use the same check to help here

 We can achieve our intended effect by:

 Defining the ‘axes’ we wish to test

 Projecting all points of each shape along each tested axis

Separating Axis Theorem:

Practise

 Projecting a point gives us a single value describing the

distance of that point along the axis being tested.

 The maximum and minimum of those values defines how

much of that axis is occupied by our object – and that

allows us to determine if, in that axis, two objects

overlap.

 Let’s look at an example

Separating Axis Theorem:

Practise

 Visualise the axis we’re

projecting against as the

green line (the normal of

the red line, projected

infinitely)

 Notice the blue and

orange lines of projection

here – that’s the maximum

projection of the points of

each object along that

axis

 There’s a gap – they don’t

overlap in this axis, ergo

they haven’t collided

Separating Axis Theorem:

Practise

 We can see in this slightly

altered image that were

the objects actually

colliding, there WOULD be

overlap of their

projections on that normal

 This also helps is get a

better understanding of

why we’re projecting onto

the normal of the test axis

in order to determine if

the objects overlap, which

can be counter-intuitive

Separating Axis Theorem:

Practise

 The code to find the minimum and maximum

projections along a vector is provided in

SphereCollisionShape and CuboidCollisionShape

 We should pay attention to the Cuboid case during

today’s practicals, and devote some time to

understanding what the code is doing, as cuboids

are the generic convex polyhedron

Separating Axis Theorem:

Practise

 Projection of point 𝑎 along axis 𝑏 is given by the

formula

𝑝𝑟𝑜𝑗𝑎𝑏 =
𝑎 ∙ 𝑏

|𝑏|

𝑏

|𝑏|

 Normalising 𝑏 lets us substitute the equation down to

𝑝𝑟𝑜𝑗𝑎𝑏 = 𝑎 ∙ 𝑏 𝑏

 The distance of the point along the axis is the first

term, so

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎 ∙ 𝑏

Potential Separating Axes

Potential Separating Axes:

The Problem

 We’ve now determined how SAT tells us when two

objects haven’t collided

 But we’ve not addressed a core issue with SAT – and,

indeed, the algorithm’s main weakness

 How on earth do we know what axes to test against?

 We can’t consider every axis, there’s potentially an

infinite number of them…

Potential Separating Axes:

The Solution

 Thankfully, there aren’t really an infinite number of

axes to check – because we’re dealing with polyhedral

objects. Spheres notionally have an infinite number of

axes to check (more on that in the next tutorial), but a

twenty-sided die (for example) only has a finite number

we need to consider

 We assume every object to be made up of a series of

lines or faces – just like most objects in our game will

be.

Potential Separating Axes:

The Solution

 This means that the number of collision points is limited

to each flat face. (Important fact!)

 As a result, we can take the normal of the faces as

potential collision axes.

 This can be a little counterintuitive, so let’s consider an

example…

Potential Separating Axes:

The Solution

 The figure below shows a check between two triangles

Potential Separating Axes:

The Solution

 Let’s consider the axes in turn, as generated by the

faces

Potential Separating Axes:

The Solution

 We’ll see there are six axes to check, one for each face

Potential Separating Axes:

The Solution

 The two objects intersect on all axes except one – e3

Potential Separating Axes:

The Solution

 As such, there has been no collision

Potential Separating Axes:

Optimisations

 Just like AABB, our SAT

axis check can break out

if any of its conditions

aren’t met – e.g., the

example before could

have broken out at e3,

because that proved no

collision

 Parallel Axes don’t need

considering (common

sense). How many axes

would nee considering

for the d20?

SAT Key Feature Summary

Key Features

 If there exists an axis in which two objects do NOT

overlap, we can prove they do not collide

 If no axis exists in which they do not overlap, we can

safely assume that they have collided (interfaced)

 The number of possible axes to check is the same as the

number of faces of the objects, summed

 Parallel axes can be ignored

 As all conditions must be met for confirmation of an

axis, check can break out when any one condition isn’t

met without checking the remainder

Generic Interface

Detection

The problem is simple – why

are the solutions complex?

 Let’s pause for a moment and think about the problem

we are trying to solve

 Envision the scenario below:

The problem is simple – why

are the solutions complex?

 Just going off what we knew yesterday of determining

whether a point lies beneath a plane, there’s an obvious

approach to solving this scenario.

 We’ll explore this approach over the course of the next

few slides

The problem is simple – why

are the solutions complex?

 So, what we need to do first is define the lines (planes,

in three dimensions) that represent our objects.

 We do that, in this example, twelve times

The problem is simple – why

are the solutions complex?

 By defining these planes, we obtain their normal

 And now we have the planes’ normals, we’re ready to

actually perform our check.

The problem is simple – why

are the solutions complex?

 We can now compare every point in the green object

against every plane defining the red object

 If a point exists inside every plane in the red object,

there is an interface

The problem is simple – why

are the solutions complex?

 By using this N-squared approach, we guarantee that, for any

object, we can determine whether or not there’s an interface

 But this is lacking the accurate collision normal – for

collision response – which can be extracted using SAT

The problem is simple – why

are the solutions complex?

 That is the nature of SAT – and, indeed, any algorithm, is a

trade-off. We perform a more computationally expensive

operation in order to obtain a more valuable result – in this

case, data we can meaningfully employ in the final stage of

our physics update.

The problem is simple – why

are the solutions complex?

 This should reiterate the importance of elements like the

broad phase culling, and the reason we use simple hulls to

represent even complex objects in our environment

Edge Cases

What are edge cases?

 Edge cases are scenarios in which an algorithm can’t be

applied to solve without some external reasoning.

 A simple example would be the definition of a chess

board.

 You can define the connections of a chess board, for the

majority of squares, as being +1 (right), -1 (left), +8

(up), -8 (down)

 But that doesn’t take into account the board’s edges

Are edge cases a problem?

 Not really.

 They happen all the time.

 Sometimes, the solution is external reasoning about
the scenario (i.e., If square == 1, then… If square == 9
|| 17 || 25…)

 Sometimes, the algorithm itself can be extended to
account for edge cases

 Where possible, employ algorithms with allowances
for edge cases already built-in

SAT in 3D: Edge Cases

In SAT’s case, the Edge Cases

are literally Edge Cases

 Edge-Edge Collisions

 Spheres and other curved surfaces

Edge-Edge Collisions

 Consider the scenario in three dimensions, shown below.

 Our SAT algorithm as explored in the last tutorial will

give a false positive on this check. Here’s why…

Edge-Edge Collisions

 Note only six checks, because parallel faces

 Looking through them, we can clearly see that all of our

face normal give a positive result for a collision: SAT

believes these objects have collided, and we can clearly

see they haven’t.

Edge-Edge Collisions

 This is due to the fact we’re extending logic originally

applied in two dimensions into three dimensions

 Looking at it another way, it happens because, if we

view our cuboids as flat objects, they actually have two

surface areas, e.g.

Edge-Edge Collisions

 Our approach only accounts for the left-hand case. We

need to think a little abstractly in order to account for

this problem

Edge-Edge Collisions

 The easiest way to extend our algorithm to account for

the problem is to take every edge of both objects, and

cross the permutations to produce additional axes

 You’ll remember from graphics that the cross product of

two non-parallel vectors results in a vector which is

orthogonal (perpendicular) to both

 As such, considering Cartesian axes, 𝑥 × 𝑦 = 𝑧

Edge-Edge Collisions

 Taking the cross-product of an edge on Object 1 and an

edge on Object 2 will generate a new axis which is

perpendicular to both of these edges, and thus define a

new plane in which the two objects might not overlap

 You’ll note in the framework that we’ve added a check

which prevents permutations being considered more

than once – that’s because we’ve now got quite a few

more planes to compare against – removing duplicates

saves us processing time – if we didn’t, the above

example would give us 64 new planes to consider

 This addresses our first edge case

Spheres and Curved Surfaces

 As discussed yesterday, spheres are the only object

which guarantee a single point of contact with another

convex hull

 That’s fine, except spheres also have an infinite number

of faces.

 Since our SAT-based system is based on face count, how

are we meant to resolve this?

Spheres and Curved Surfaces

 Consider the scenario below

Spheres and Curved Surfaces

 In the sphere-sphere case, determining the ‘face’ we

ought to be checking is actually fairly trivial – it’s the

vector between the centres of the spheres – we can see

why…

Spheres and Curved Surfaces

 This isn’t always the case for sphere-polygon, however –

let’s have a look at an example of that situation.

Spheres and Curved Surfaces

 Here, we need to determine the closest point of Object

2 to the sphere. We iterate through each face of the

polygon, to deduce which point of the polygon is closest

to the sphere based on the normal of that face

Spheres and Curved Surfaces

 The code to perform this check is provided for you to

integrate into your framework

Summary

 Discussed Broadphase approaches and the differences

between Broad and Narrow phases

 Discussed SAT in the context of interface detection

 Outlined the way SAT works

 Highlighted ways to optimise an SAT-based check

 Discussed collision detection algorithms in a general

sense

 Highlighted the importance of algorithmic edge cases

 Addressed key edge cases which apply to SAT in three

dimensions

Implementation

 Check the Tasks handout for today

 Have some fun with object representation

