
Physics Tutorial 7:

Solvers

New Concepts

 Differentiating Constraints, Revisited

 Jacobian solutions

 The Constraint Force

 Global Solvers

 Linear Equations and Gauss-Seidel

Constraints, Revisted

Why do we need Constraints?

 “Things that need to be true, so our system will be

accurate”

 That’s obvious in our approach to calculus, and our

criticisms of it – our concern is the accuracy of the

approach involved, stability, relation between

complexity and time step, etc.

 Constraints turn this on its head

 As we said earlier this week, instead of asking

what must be true in order for our system to be

accurate, we’re asking what mustn’t be true in

order for our system not to be inaccurate

Why do we need Constraints?

 A single object moving through space can happily be
represented forever using numerical integration

 Once you have that object interact with things,
integration itself isn’t generally enough – things can
stop the object moving, or affect how it moves.

 Constraints are a means of representing these
interactions in concert with each other – instead of
treating each object as an independent, perfect
Newtonian entity, we establish what the object can and
cannot do contextually.

Why do we need Constraints?

 Example: A Wheel

 How is this object

constrained?

 It can freely rotate

about a single point

(its axel) along a single

axis

 The wheel itself cannot

move in linear fashion

Why do we need Constraints?

 Example: A Door on a Hinge

 How is this object

constrained?

 It can rotate about a

single point (its hinge)

along a single axis, but

this rotation is bounded

 The door cannot move in

linear fashion

Why do we need Constraints?

 Example: A Book

 How is this object
constrained?

 Consider the cover and
the pages to be different
objects

 Cover and the pages have
a constraint between
them, hinging them at the
spine of the book

 Opening the cover affects
the pages

Why do we need Constraints?

 Example: A PENDULUM

OF SWINGING DEATH

 So, what type of

constraint is Poe’s

eponymous pendulum?

Why do we need Constraints?

 Example: A PENDULUM

OF SWINGING DEATH

 So, what type of

constraint is Poe’s

eponymous pendulum?

 Same as the door on a

hinge – single constraint

allowing bounded

rotation about one axis

Resolving Constraints?

 In its simplest form, a Constraint system will take the

form of a set of linear equations

 We pass in the velocities (as an example), both linear

and angular, and the system resolves to a force to be

applied to each object in the system

 Resolving these constraints is the purpose of a Solver,

which we’ll explore in-depth later in the lecture

Resolving Constraints?

 Constraint-based solvers permit us to resolve all
constraints on a system simultaneously (e.g., in a single
time-step). But why would we bother with resolving all
constraints on all objects in one solver?

 What happens when we’ve got multiple constraints
affecting the same object? A stack of boxes or a ball
pool?

 By solving the system in its entirety, no one object will
be affected more than the others (e.g., the box at the
bottom of the stack won’t be unduly pushed further
than the other boxes)

The Jacobian

What is the Jacobian?

 Imagine two objects, A and B, with velocities𝑣𝐴𝑣𝑏and
angular velocities 𝜔𝐴𝜔𝐵, respectively.

 A velocity constraint (representing the entire velocity of
this system) needs to consider all four variables.

 Define that velocity constraint V as

 𝑽 =

𝒗𝑨
𝝎𝑨

𝒗𝑩
𝝎𝑩

What is the Jacobian?

 By using the POWER OF MATH (see the calculus in the

handout), we can calculate the rate at which the

constraint changes value. This shouldn’t be confused

with rate of change of velocity (acceleration).

 If we differentiate the constraint 𝐶, to obtain ሶ𝐶 (pron.

cee-dot) we get an equation of the form:

 ሶ𝐶 = 𝑗1 ∙ 𝑣𝐴 + 𝑗2 ∙ 𝜔𝐴 + 𝑗3 ∙ 𝑣𝐵 + 𝑗4 ∙ 𝜔𝐵

 ሶ𝑪 = 𝑱𝑽 = 𝒋𝟏 𝒋𝟐 𝒋𝟑 𝒋𝟒

𝒗𝑨
𝝎𝑨

𝒗𝑩
𝝎𝑩

=0

The Constraint Force

The Constraint Force

 So, the Jacobian’s important – in fact, it’s the key to

unlocking constraint-based solvers

 We also need to consider the concept of Work done –

this is a physical concept that comes, again, from

Newtonian dynamics

 An object is considered to have done work 𝑊 if it has

moved a distance 𝑠 under force 𝐹
𝑊 = 𝐹 ∙ 𝑠

 Note that this is a dot product of two vectors

 Work done is a scalar

The Constraint Force

 Consider a weight of mass 𝑚 resting on a table of height

ℎ. From previous lectures we know that there is a force

(gravitational) pulling the weight downwards, and a

countering force from the table which holds the weight

in equilibrium

 In this system, no work is done, because 𝑠 has no

magnitude (the weight isn’t going anywhere)

 If the table suddenly disappeared, the mass would

accelerate at 𝑔 (gravitational acceleration) and travel ℎ
metres towards the ground

 𝐹 = 𝑚𝑔, ergo work done 𝑊 = 𝑚𝑔ℎ (which correlates to

the weight’s potential energy at height ℎ)

The Constraint Force

 A constraint, as we said right at the beginning of the

lecture, is something an item cannot do if our system is

to avoid being inaccurate

 A constraint might stop an object from occupying a

location (such as, the location of another object…)

 A constraint might ensure an object can only pivot

about a certain axis, or a certain amount (like a knee

joint)

 As such, a constraint never adds energy to the system

 This is a key concept – comes back to conservation of

momentum and system stability

The Constraint Force

 So, let’s consider the rate of work done (power 𝑃)

 Since we know that a constraint never adds energy

(work) to the system, 𝑃 = 0

 More fully: 𝑃 = 𝐹 ∙
𝑠

∆𝑡
= 0

 We recall from yesterday that change in displacement

over change in time is analogous to velocity 𝑣, ergo

𝐹 ∙ 𝑣 = 0

The Constraint Force

 Considering again a two-body case, we can generalise

this principle – each body has two quantities that keep

them constrained (so four, total, in the system):

𝐹 =

𝑓1
𝜏1
𝑓2
𝜏2

 Remember that we’re dealing with both linear and

angular, hence our inclusion of torque

 You’ll notice that this is of the form of our velocity

constraint 𝑉; generalising this further, as constraint

forces are perpendicular to the velocity vector, allows

us to conclude that:

𝐹 ∙ 𝑉 = 0

The Constraint Force

𝐹 ∙ 𝑉 = 0

 This, really, is the basis for our constraint-based solver

 As this is the relationship our Jacobian has with the

velocity vector V, we can use the Jacobian as the basis

of our constraint force. By multiplying through by an

unknown quantity λ, the constraint force becomes:

𝐹 = 𝐽𝑇λ

 Computing λ was discussed earlier in the week

The Global Solver

The Global Solver

 So, by now we have (hopefully!) a good understanding

of what a constraint is, and how constraints help us

represent physical events in our simulation

 The global solver is the umbrella term for how we

leverage constraints to handle an entire scene

 The rationale for it is fairly straightforward

The Global Solver

 Consider the example of

a stack of boxes.

 If we resolve a

constraint between B

and C, that result will

be invalidated by the

resolution between A

and B

 To avoid this we

consider all constraints

acting on B in the same

set of linear equations

A

B

C

‘Global’ isn’t really ‘Global’

 But if you look at the way the system is operating we’re

actually resolving constraints iteratively

 What this means is that our system is always moving

towards the correct solution, even if it’s not there on

any given frame

‘Global’ isn’t really ‘Global’

 All global solvers do this

 The important point is that all constraints are resolved as

best they can, and more iterations move us towards greater

accuracy (in the context of our linear equations – in the

context of our time-stepped physics system, we tend away

from accuracy)

 So how do we do it?

Solving Linear Equations

Consider the following

equations…

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

 Simple way of solving

you’ll have learned in

school

 Rearrange to isolate a

variable (𝑥 = 𝑧 + 6, 𝑦 =
3 − 2𝑧)

 Substitute to compute 𝑧

 Rinse and repeat

Consider the following

equations…

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

 Straightforward

approach to understand

 Not tractable for large

systems – what if you

have a dozen unknowns?

 Need a more

computationally

efficient approach

Matrix approach

(Ax = b Form)

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

4 1 0
1 0 −1
0 1 2

𝑥
𝑦
𝑧

=
23
6
3

 Rearrange our array of

equations into a matrix

 Remembering how

matrices multiply out,

this should be intuitive

 Representation is

scalable, i.e.:

Matrix approach

(Ax = b Form)

𝑎11 𝑎21
𝑎12 𝑎22

⋯ 𝑎𝑖1
⋯ 𝑎𝑖2

⋮ ⋮
𝑎1𝑗 𝑎2𝑗

⋱ ⋮
⋯ 𝑎𝑖𝑗

𝑥1
𝑥2
⋮
𝑥𝑗

=

𝑏1
𝑏2
⋮
𝑏𝑖

A x = b

 𝑨 is the Coefficient Matrix (the coefficients in our

equation array, so the 2 in 2x)

 𝒙 is the Solution Vector – the unknowns we’re

attempting to compute

 𝒃 is the Constant Vector – the RHS of our equations

 Also, Baumgarte – more on that later

Using linear solvers to resolve

multiple constraints…

 Many approaches to solving the 𝑨𝒙 = 𝒃 form

 Jacobi Method

 Parallelisable (so good for GPU), but slow convergence

 Gauss-Seidel

 Simplest to implement, default framework approach

 Successive Over-Relaxation

 Faster convergence than Gauss-Seidel, more complex to implement

 Conjugate Gradient Method

 More complex, faster convergence

 And many, many more…

Gauss-Seidel

 Iterates through each row of the A matrix

 Solves every constraint acting on a given object, in

order

 Output is how the object’s velocity must change in

order to more closely satisfy its constraints

 Note the ‘more closely’.

 It’s an eventually consistent approach – always tending

towards accuracy, but never quite reaching it so long as

objects within the environment are interacting

Gauss-Seidel

 Assumes that all objects have non-zero mass (which

must be true, because dividing by zero is bad).

 Unbounded solution time – convergence can take

forever – imagine a wall with infinite mass, constrained

to another wall with infinite mass – will take infinite

time to compute

 Engineering solution: Iteration cap, will only go through

a certain number of iterations before providing output

 Using last solution as a basis statistically improves

performance (compared with starting from 0)

Gauss-Seidel

 Ordering of constraint solution MATTERS

 To converge towards same answer, each iteration must

iterate over constraints in the same order every time

 Imagine a stack of boxes.

 First iteration, starts at the top, bottom box is most

affected

 Second iteration, starts at the bottom, top box is most

affected

 Never close to convergence because oscillates between

priorities

Gauss-Seidel

 In implementation terms, just means the for-loop

executes the same way each iteration

 Randomising the order of manifolds each time-step

(NOT each iteration!) may lead to greater accuracy.

Consider why…

Constraint Drift

Preventing Constraint Drift

 Time-series – errors spiral over time

 Problem made more apparent by eventually-consistent

nature of solver

 Consider the distance constraint presented in a previous

lecture

 Constraint is based entirely on velocity

 If one object moves in a single frame, constraint will not

realise it, and continue to update based on new distance

Baumgarte Stabilisation

 Adds forces to the system to compensate for previous

errors

 Can be considered 𝒃 in our 𝑨𝒙 = 𝒃

 In the framework, managed through addition of velocity

based on length of constraint

 Eventually compensates for drift, in the same way that

our solver is eventually consistent

Baumgarte Stabilisation

 Value for Baumgarte not readily predictable

 Will need fine-tuning

 Too little, doesn’t prevent drift. Too much, system

explodes.

 Usually a value between 0.1 and 0.3 that which would

be needed to resolve the positional error in a single

time-step is appropriate, but will need some

experimentation

Summary

 Revisited Constraints

 Discussed the Jacobian

 Connected both back to force (on which our system

hinges, pun intended)

 Introduced the concept of the global solver

 Linear Algebra

 Gauss-Seidel

 Baumgarte

Implementation

 Explore collision response

 Vary Baumgarte, experiment with it

 Stack objects

 Start coursework

