
CSC8503
Advanced Game Technologies



Module Overview

 Fourteen Tutorials divided between four topics:

 Physics Simulation in Real-Time

 Artificial Intelligence

 GPU Computation

 Network Programming

 Three weeks…



Module Overview

 Begin today with Physics, which lasts the whole of this 

week

 We’ll cover all 14 tutorials by next Friday

 Means you still get a full week of uninterrupted 

practical work to do the coursework, after having 

learned all the subject matter



Lecture Timetable

 This week:

 Monday 28th, 10:00AM (now)

 Tuesday 29th, 10:00AM, 1:00PM

 Wednesday 30th, 10:00AM

 Thursday 1st, 10:00AM

 Friday 2nd, 10:00AM, 1:00PM

 Next week:

 Monday 5th, 11:00AM

 Tuesday 6th, 10:00AM, 1:00PM

 Wednesday 7th, 10:00AM

 Thursday 8th, 10:00AM

 Friday 9th, 10:00AM, 1:00PM



Practical Timetable

 14:00-16:00, every weekday (excl. marking day)



Coursework

 Specification is now online.

 Did anyone make the mistake of using the specification 

from last year, on account of not looking at the dates?



Coursework

 Physics underpins EVERYTHING

 Get your physics right

 Without the physics, you can’t get enough marks to pass 

the coursework portion of the module

 Focus of this entire first week is physics



Additional Note

 Industry visit to ZeroLight

 Monday 12th December, 11:00-14:00



Physics Tutorial 1:

Newtonian Dynamics



New Concepts

 The Physics Engine - Overview

 Linear Newtonian Dynamics

 Newton’s Laws

 Conservation of Momentum

 Scalars and Vectors

 Forces

 Rotational/Angular Newtonian Dynamics

 Torque

 Inertia

 Physical Representation of Virtual Objects

 Particles

 Rigid Bodies

 Soft Bodies

 Physical Appearance vs. Graphical Appearance



What is a Physics Engine?





The Physics Engine:

Overview

 Physics engine must be a compartmentalised 

subsystem

 In most modern games, physics comes second only 

to rendering in terms of processor scheduling

 The physics update cycle is normally threaded away 

from all other game engine tasks

 Operates on a fixed time step

 Dynamic time steps can lead to breakages



The Physics Engine:

Overview

 On the subject of dynamic time steps:

 Though we’re a bit dismissive of them, they actually can 

work, and are used semi-regularly. In the framework 

there is a function which allows you to dynamically 

update your time step

 The approach we take to constraint solvers is slightly 

predicated on fixed time steps – things like the 

Baumgarte offset, which are a function of time, need 

recomputing dynamically in a dynamically time stepped 

system

 The core problem with them is networking; if the 

physics updates aren’t consistent between clients and 

the server, terrible things happen.



The Physics Engine:

Overview

 Responsibilities of the Physics Engine:

 Update/Maintain positions and orientations of items

 Determine what collisions are possible (broad phase)

 Determine what collisions have happened (narrow 

phase)

 Generate data regarding those collisions

 Resolve those collisions



The Physics Engine:

Update Cycle

Update 
Position/ 
Orientation

• Compute 
Acceleration/ 
Velocity

• Integrate

Broad Phase 
Culling

• Cheap Algorithms

• Remove 
impossible 
collision pairs

Narrow Phase

• Expensive 
Algorithms

• Detect collisions/ 
interfaces

• Get Collision Data

Collision 
Resolution

• Use Collision Data

• Work out what 
must be done to 
position and 
orientation



The Physics Engine:

Update Cycle

Update 
Position/ 
Orientation

• Compute 
Acceleration/ 
Velocity

• Integrate

Broad Phase 
Culling

• Cheap Algorithms

• Remove 
impossible 
collision pairs

Narrow Phase

• Expensive 
Algorithms

• Detect collisions/ 
interfaces

• Get Collision Data

Collision 
Resolution

• Use Collision Data

• Work out what 
must be done to 
position and 
orientation

Constraints



The Physics Engine:

Update Cycle

 Constraint-based solvers, really, relate mostly to the 

last step – collision resolution

 But how you resolve collisions is directly connected to 

how you set them up in the first place

 As such, we need to introduce the concept of 

constraints early, so we aren’t caught with our pants 

down trying to implement a constraint-based resolution 

system later



A note on Code Samples

 Many of the lecture notes in this series include 

illustrative code samples

 Some of these are just that – illustrative. They’re 

giving you an idea of what we’re talking about

 In that sense, this module differs significantly from 

other work you’ve done, where everything in the 

code needed to be embedded in your project

 In your physics system, it’s up to you to reason 

about what to implement – and it’s up to us to equip 

you to make those decisions



A note on Code Samples

 You are actively encouraged to explore commercial 

physics engines – in the industry, you will normally be 

using such an engine

 Your coursework won’t employ a commercial physics 

engine – everything in there you’ll either write 

yourself, or draw from the tutorial sample code

 The purpose of teaching you how a physics engine 

works, from start to finish, is to equip you to 

understand the complexities involved

 Not just intellectual complexity but computational

complexity – more-so than graphics, inefficient 

physics can hammer your processor scheduling and, 

consequently, perceived frame rate – stationary 

objects may as well not be rendered



Linear Newtonian Dynamics



Newton’s First Law

 A body will remain at rest or continue to move in a 
straight line at a constant speed unless acted upon 
by a force.

 This is the foundation of all dynamics.

 Objects at rest remain at rest until they have some reason to stop 
resting.

 Objects moving at a given velocity remain at that velocity until 
there’s a reason for that velocity to change.

 Collision

 Applied Force

 Removal of a balancing force (see Third Law)



Newton’s Second Law

 The acceleration of a body is proportional to the 

resultant force acting on the body, and is in the 

same direction as the resultant force.

 𝐹 = 𝑚𝑎

 First law tells us when something needs to change.

 Second law tells us that needs to change.



Newton’s Third Law

 For every action there is an equal and opposite 

reaction.

 Third law is book-keeping.

 For the first two laws to be true, there needs to be balance.

 Objects sit at rest all around this lab, despite there always being a 

gravitational force on them.

 Ergo, there’s a counter-force applied against them by the object 

they’re resting on. It must be equal, not greater than, or they’d 

fly.

 First person to mention the Meissner Effect fails the module.

 Question: Do we need to compute this every 

frame?



Conservation of Momentum

𝑚1𝑣1
− +𝑚2𝑣2

− = 𝑚1𝑣1
+ +𝑚2𝑣2

+

This law is fundamental to how objects interact 

with each other. The first three have basically 

told us about the forces acting on objects; this 

one addresses forces imparted between objects



Vectors and Scalars

 Almost all of our computation relating force to motion is 

performed using vectors.

 As in graphics, when we use the term vector, we mean 

something which has both magnitude and direction.

 We don’t mean the “STL Vector” container class.

 When we use the term scalar, we mean something which 

only has magnitude.

 Consider the momentum example in the previous slide:

 Is mass a vector, or a scalar?

 Is velocity a vector, or a scalar?

 Is momentum a vector, or a scalar?

 Is speed a vector, or a scalar?



Resolving Multiple Forces

 An object of mass 𝑚 is 

subject to two forces:

 𝐹 =
2
5
1

 𝐺 =
−2
2
2

 What is the resultant 

force, 𝑅, on the object?

 What is its acceleration?



A note on Acceleration, 

Velocity and Displacement

 Acceleration is the change in velocity over time. If 

something has acceleration (or deceleration), it is 

moving faster (or slower).

 Velocity is the change in displacement over time. If 

something has velocity, it is moving.

 Displacement is the mechanical term for an object’s 

position (position is generally used in our tutorials). If 

something has had a velocity, its displacement has 

changed.

 These relationships will be explored this afternoon



Rotational/Angular Newtonian Dynamics



Why do we need angular 

motion?

 Objects in our game need more than just a 

position – they need orientation.

 Even spheres, if textured, need an orientation to ensure 

textures map correctly

 Snooker balls – which aren’t even textured, though may be 

mapped for lighting effects – need orientation, and rate of 

change of orientation, even more – spin happens.

 Tracking and updating the orientation of objects is 

a fundamental element of physics

 Without it, our objects never rotate in response to stimuli.

 Imagine a collision between two cubes – how believable 

would that be without rotation?



What does it mean in 

computational terms?

 It’s another layer of complexity

 We’re adding computational expense to each object’s 

updates

 It’s often seen as ‘more difficult’ than linear motion

 But really, it has direct analogue – we’re just solving the 

same problem for a different property of the object



A note on Radians

 Radians are a physicist’s unit of angle, based on the 
radius of a circle

 Circumference of a circle is 2𝜋𝑟

 So, for a circle of radius 𝑟, its radius will fit along the 
circumference 2𝜋 times

 If we draw analogue to degrees (360° in a circle), that 
means there are 0.01745… radians in a degree, or 
57.2957795… degrees in a radian

 An angle given in radians is the ratio of the arc swept by an 
angle θ radians to radius r of the corresponding circle

𝜃 =
𝑙

𝑟



A note on Radians

 Why do we care?

 The radian is the fundamental unit of angular motion

 Trigonometric functions expect inputs to be handled 

in radians in most cases

 Keeping everything in radians allows us to leverage 

the above ratio to avoid conversions to and from 

degrees

 Sometimes angles will be greater than a full 

rotation when computed – a quick fix can be used 

to ensure these situations don’t break your maths:

 If 𝜃 > 2𝜋 𝜃 −= 2𝜋

 If 𝜃 < −2𝜋 𝜃 += 2𝜋



A note on Quaternions

 You will live, eat, sleep and breathe quaternions for the 

remainder of the degree programme

 These were introduced in the Skeletal Animation 

tutorial in your graphics module, but we’ll briefly go 

over them here

 We’re reminded that a quaternion if a four-element 

vector of the form (𝑎, 𝑏, 𝑐, 𝑤).

 The orientation of an object is normally stored as a 

quaternion, and the maths represents it using the 

symbol Θ



A note on Quaternions

 So, let our orientation Θ be of the form 𝑎, 𝑏, 𝑐, 𝑤

 The orientation of our object itself can be described, in a 

physical sense, in terms of a three-element vector which 

defines the angle about which it has rotated (denoted ෝ𝒏), and 

an angle around that axis which it has rotated (denoted 𝜃).

 This can be tricky to get our heads around, as normally we 

think about objects rotating in multiple directions at once –

but the trick is realising that a single angle can describe all 

rotation, if we define the axis about which the rotation occurs 

ourselves, e.g.:

 We reiterate this mainly because it’s possible to gloss 

quaternions over a bit in graphics and still ‘get’ what 

animation does; not so in physics



A note on Quaternions

 So, once we’ve established our axis of rotation ො𝑛, where 

ො𝑛 = (𝑥, 𝑦, 𝑧), and our angle of rotation 𝜃 about that axis, 

our orientation Θ can be calculated as:

Θ = 𝑥 sin
𝜃

2
, 𝑦 sin

𝜃

2
, 𝑧 sin

𝜃

2
, cos

𝜃

2

 Why bother with quaternions, though? Aren’t matrices 

easier to visualise?

 Lower memory footprint

 More operations to create, but fewer operations required 

to chain updates

 Your physics simulation is one, massive chain of updates



Fundamentals of

Angular Motion: Torque 

 Torque is the term in physics defined as the cross 

product of a force applied to an object and the distance 

that force is applied from the object’s pivot point

𝜏 = 𝐹 × 𝑑

 This is a cross product because we’re acting across 

three dimensions



Fundamentals of

Angular Motion: Torque 

 In this way, torque is our angular analogue to force in 

linear motion

 This relationship between torque and force also 

indicates how we can unify the various forms of motion 

based on a single variable

 But what is our analogue to acceleration?



A note on Angle, Angular Velocity, 

and Angular Acceleration

 As noted in our discussion of radians, 𝜃 is our angle. 

This is analogous to displacement

 𝜔 denotes our angular velocity (the change in angle 𝜃
over time)

 𝛼 denotes our angular acceleration (the change in 

angular velocity 𝜔 over time)

 Like their linear cousins, they’ll be discussed this 

afternoon



Fundamentals of

Angular Motion: Inertia

 Now we have an analogue to acceleration, and an 

analogue to force, we need to establish how they’re 

connected

 The relationship between torque and angular 

acceleration is referred to as the moment of inertia. 

Torque is the product of inertia and angular 

acceleration

𝜏 = 𝐼𝛼

 Inertia represents the resistance a body has to change 

of state of angular velocity



Fundamentals of

Angular Motion: Inertia

 The moment of inertia 

depends on distribution 

of mass about the axes 

of the rotating object

 The wrinkle: Inertia is a 

complex property. A 

scalar value I wouldn’t 

contain enough 

information to describe 

these properties of an 

object

 The answer: Inertia 

must be represented as 

a matrix



Fundamentals of

Angular Motion: Inertia

 The inertia matrix, or inertia tensor, for an object in 

three dimensions takes the form:

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

 As noted before, we work in vectors when handling 

three-dimensional motion; 𝜏 = 𝐼𝛼 becomes

𝜏𝑥
𝜏𝑦
𝜏𝑧

=

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

𝛼𝑥
𝛼𝑦
𝛼𝑧



Fundamentals of

Angular Motion: Inertia

𝜏𝑥
𝜏𝑦
𝜏𝑧

=

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

𝛼𝑥
𝛼𝑦
𝛼𝑧

 Well, that’s a nice formula, but what does any of it 

mean?

 It’s not actually that complicated

 All axes need to be considered, and the effect of torque 

on one axis isn’t always limited to the same axis of angular 

acceleration

 So, 𝐼𝑥𝑥 represents the effect 𝜏𝑥 has on 𝛼𝑥. 𝐼𝑥𝑦 represents 

the effect 𝜏𝑥 has on 𝛼𝑦, while conversely 𝐼𝑦𝑥 represents 

the effect 𝜏𝑦 has on 𝛼𝑥 - and so on.



Fundamentals of

Angular Motion: Inertia

 Important properties of the inertia 

matrix:

 The diagonal elements (𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧) must 

never be zero – which is another way of saying 

that 𝜏𝑥 must always have some effect on 𝛼𝑥, 

etc.

 The matrix must be symmetrical (e.g., 𝐼𝑥𝑦 =

𝐼𝑦𝑥, 𝐼𝑥𝑧 = 𝐼𝑧𝑥, and 𝐼𝑦𝑧 = 𝐼𝑧𝑦)



Fundamentals of

Angular Motion: Calculating α

 So, we’ve established how to determine torque:

𝜏 = 𝐹 × 𝑑

 And the relationship between torque and angular 

acceleration via the inertia matrix:

𝜏 = 𝐼𝛼

 But how do we actually compute the angular 

acceleration itself?

 We need to keep in mind that torque and angular 

acceleration are both three-element vectors, and the 

inertia matrix is, well, a matrix



Fundamentals of

Angular Motion: Calculating α

 If 𝜏 = 𝐼𝛼 then:

𝛼 = 𝐼−1𝜏

 Where 𝐼−1 is the inverse of the inertia matrix

 The inverses of diagonal matrices are easy to compute, 

as each diagonal element is replaced by its reciprocal

 The inverses of other matrices require a full matrix 

inversion computation, which is highly expensive

 BUT assuming the bodies in our simulation don’t 

change, or change in a predictable fashion (e.g., a 

spaceship which always breaks the same way), we can 

handle the generation of inverse matrices before 

compiling our program, or during loading



A note on Symmetry

 The inverse inertial matrices of symmetrical objects are 

diagonal and, therefor, easier to compute than their 

asymmetrical cousins

 As a result, objects in games which aren’t really 

symmetrical (such as barrels and bricks) are often 

considered symmetrical for the purposes of angular 

motion



A note on Symmetry

 This is especially true for objects whose inertia tensor is 

likely to change during runtime (to mitigate the cost of 

those pesky re-computations)

 A completely symmetrical object has a specific, key 

property: torque about an axis only causes rotation 

about that axis – so all the non-diagonal elements of the 

inertia matrix can be set to zero, e.g.:

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧



A note on Symmetry

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

 As to why the diagonal elements must be non-zero, 

consider the equation 𝜏 = 𝐼𝛼.

 If 𝐼𝑥𝑥 is the effect 𝜏𝑥 has on 𝛼𝑥, then for any non-zero 

value of 𝜏𝑥, 𝛼𝑥 needs to be infinite to satisfy 𝐼𝑥𝑥 = 0.

 This is a Bad Thing.

 Additionally, breaks several laws of thermodynamics.

 Which is also a Bad Thing.



Special Cases:

Spheres and Cuboids

 Many objects in your game can be abstracted to solid 

spheres, or solid cubes, of uniform mass distribution

 This simplifies computation significantly, and can be a 

tidy way of improving performance without too 

adversely affecting accuracy

 You should be able to recall the following



Special Cases:

Spheres and Cuboids

 Consider a solid sphere of radius r and mass m

 The effect of an applied force (any value of torque at 

radius r) will be identical across all axes (there is no 

purer shape than a sphere). That effect is given by the 

equation

𝐼 =
2𝑚𝑟2

5

 And the inertia matrix of the sphere takes the form:

𝐼 0 0
0 𝐼 0
0 0 𝐼



Special Cases:

Spheres and Cuboids
 Consider a solid cuboid of length l, height h, and width w.

 The effect of an applied force (torque) differs for each 
axis, such that:

𝐼𝑥𝑥 =
1

12
𝑚 ℎ2 + 𝑤2 ,

𝐼𝑦𝑦 =
1

12
𝑚 𝑙2 + 𝑤2 ,

and 𝐼𝑧𝑧 =
1

12
𝑚 ℎ2 + 𝑙2

 Where the inertia matrix of the sphere takes the form:

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧



A note on Asymmetry

 So, we already know asymmetrical objects potentially 

generate more computational expense

 Why bother with them?

 Well, almost no objects in the universe (of a scale we 

can meaningfully interact with, much less see) are 

completely symmetrical.

 There’s an argument to be made for the cores of neutron 

stars – but if you’re meaningfully interacting with one of 

those, you’re having a Very Bad Day.



A note on Asymmetry

 This means it’s entirely feasible that a game will have 

to handle objects which aren’t totally symmetrical in a 

fashion the player finds believable

 The handout includes the equations which actually 

determine the inertia matrix of asymmetrical objects, 

but the key characteristics of such a matrix are:

 Non-zero diagonal elements

 At least some other elements are non-zero, but 

symmetrical (e.g., 𝐼𝑥𝑦 = 𝐼𝑦𝑥, etc.)

 The inverses of these matrices are expensive to 

compute on the fly. If at all possible, try and do so 

beforehand



Physical Representation vs. 

Graphical Representation



Physical Representation

 Three general ways in which the physical nature of an 

item in our environment can be modelled:



Physical Representation:

Particle Systems

 A particle based physics system doesn’t care about 

collisions, only motion

 All objects in the environment are particles – points in 

space.

 They might have mass (depending on the system being 

solved), but they have no radius

 Because they have no radius, they can’t represent 

torque; no torque, no angular motion

 Because they have no radius, they can’t collide

 These limitations make particle systems more 

meaningful to graphical effects than physics



Physical Representation:

Rigid Bodies

 Most physical calculations in video games are applied to 

rigid bodies (and the engine technology you’ll be 

developing for your coursework is largely expected to 

revolve around rigid bodies).

 Rigid bodies have an actual physical presence – a 

sphere, a cuboid, a heightmap, a puppy dog, a 

spaceship, etc.

 Their defining characteristic is that they don’t deform –

a balloon in the real world can be squeezed and 

stretched, even after it’s inflated, while a balloon 

represented in a rigid body physics system couldn’t



Physical Representation:

Rigid Bodies

 Because they have physical presence, they have 

dimensionality – radius, width, height, etc – and thus 

have a centre of motion

 So they can collide

 And they can rotate (because they can experience 

torque)

 Computing physical properties of rigid bodies is 

significantly less expensive than computing physical 

properties of soft bodies.



Physical Representation:

Soft Bodies

 Cloth, cushions, water-bombs, water itself – anything 

that deforms when subject to a force – is most 

accurately represented as a soft body.

 Soft bodies must be discretised in a physics engine –

which often makes them analogous to many small 

bodies, interconnected in some fashion (we’ll discuss 

this later in the module). This carries with it significant 

expense.

 They’re used regularly in video game technology, but 

invariably focused on situations where application 

enhances user experience/immersion

 You don’t use them ‘just for kicks’



Physical Representation

Velocity Volume Angular 

Motion

Deformation

Particle Y N N N

Rigid Body Y Y Y N

Soft Body Y Y Y Y

 It should be noted that a fully-featured physics system will 

support all these forms of object representation

 This is because all three forms have a place in many 

modern games



Physical Representation

 A key point to take away from this discussion regarding 

physical representation of objects is that it does not 

need to map to graphical representation

 The physical representation of an object needs to be 

detailed enough for its interactions with the 

environment to appear believable – it does not need to 

be as detailed as the graphical model

 As much as Newtonian mechanics, this principle of 

‘smoke and mirrors’ underpins game physics



Physical Representation
 Consider the complexity of an object as a function of its number 

of components (faces, primitives, etc.) – this is as true in physics 

as it is in graphics, and to a more pronounced degree

 We reach a point of diminishing returns in physics far quicker



On Scaling

 Consider the above scenario

 What happens if our ball moves 1km/s?

 What happens if our ball moves 1 ball-width/s?

 Unified scaling



Summary

 Reviewed Linear Newtonian Motion

 Developed a mild headache

 Reviewed Angular Newtonian Motion

 Developed a migraine

 Reviewed Physical Representation of Objects

 Saw cute penguins to offset migraine/headache



Practical

 Look at the framework code

 Right now, there’s a lot missing – you’re going to fix that 

this week

 Begin by looking at how the physics engine integrates 

with the rest of the game engine

 Prepare for tomorrow, it’s going to be a doozy


