
Physics Tutorial 6:

Collision Response



New Concepts

 Collision Response as a Concept

 Methods of Collision Response

 Projection

 Impulse

 Penalty

 Impulse-Based Collision Response

 Penalty-Based Collision Response

 Soft Bodies

 Constraint-based Collision Response



Collision Response



The Physics Engine

 We’re almost there

 We can move objects around our environment

 We can cull impossible collision pairs

 We can detect actual collisions and extract useful data 

from them



The Physics Engine

Update 
Position/ 
Orientation

• Compute 
Acceleration/ 
Velocity

• Integrate

Broad Phase 
Culling

• Cheap Algorithms

• Remove 
impossible 
collision pairs

Narrow Phase

• Expensive 
Algorithms

• Detect collisions/ 
interfaces

• Get Collision Data

Collision 
Resolution

• Use Collision Data

• Work out what 
must be done to 
position and 
orientation



The Physics Engine

Update 
Position/ 
Orientation

• Compute 
Acceleration/ 
Velocity

• Integrate

Broad Phase 
Culling

• Cheap Algorithms

• Remove 
impossible 
collision pairs

Narrow Phase

• Expensive 
Algorithms

• Detect collisions/ 
interfaces

• Get Collision Data

Collision 
Resolution

• Use Collision Data

• Work out what 
must be done to 
position and 
orientation



Collision Response

 Our response to a collision (interface) is generally to 

resolve it

 In this, there are two goals:

 First: we prevent an invalid configuration (we ensure 

that when the renderer updates, our objects are not 

overlapping)

 Remember, we can ensure the renderer is making objects 

appear in the last position they occupied until we say 

otherwise



Collision Response

 Our response to a collision (interface) is generally to 

resolve it

 In this, there are two goals:

 Second: We make sure that the objects respond to their 

collision in a manner which is believable to the player

 Has to be consistent with the scenario

 In our case, we consider the purely physical accuracy as 

our metric, but there can be design considerations

 After all, Mario jumps several times his height from a 

standing start, and lands without breaking knees



Collision Response

 The first problem is actually pretty easy to solve

 We could simply move both objects along the collision 

normal, separating them

 Move each of them a portion of the penetration depth 

and, assuming the objects are convex, there’ll be no 

further collision

 If our concave objects are broken down into multiple 

convex hulls, the same applies

 So, why don’t we just do this and go home?



Collision Response

 Because it’s not believable.

 When snooker balls impact one another, there’s an 

actual physical consequence to the collision

 If we simply move our objects such that they weren’t 

intersecting, they’d either

 Continue in the direction they were travelling, but bonded 

together

 Stop moving, and remain bonded together

 Which of these depends on our implementation, but 

normally it’s the latter – because we’re correcting the 

same collisions over and over again and resolving them the 

same way each time



Collision Response

 There has to be a better way…

 In fact, there are a few

 In this tutorial, we address the physics underpinning 

those ‘better ways’

 Next tutorial, we address the practical issues of how we 

do this computationally, reconnecting everything using 

the idea of global solvers



Collision Response Data

 We recall from that the collision response data required 

to resolve a collision is as follows:

 Contact Manifold – the point or points of the objects 

which were in contact at the instant of collision

 Contact Normal – the direction vector from the object’s 

centre to the collision surface (alternatively, the normal 

of the surface which was penetrated)

 Penetration Depth – the depth to which the objects 

have interfaced



Methods of

Collision Response



The Three Methods

 Projection Method – this acts on the position of our 

objects

 Impulse Method – this acts on the velocity of our objects

 Penalty Method – this acts on the acceleration of our 

objects

 Three attributes of motion, three methods for resolving 

collisions



Projection Method

 Basically, this is the simple approach we just outlined

 Only looks at the positions of the objects, and updates 

them to resolve interfaces

 Doesn’t consider what happens afterwards



Projection Method

 Generally not suitable for modern games

 But can be used to good effect, depending on how it’s 

employed

 For example, you could probably implement old Mario 

using Projection Method and some cunning finite state 

machines. When Mario hits a brick wall, he stops and 

begins to fall, he doesn’t bounce off it – motion after 

could be provided by gravity, at the integration step

 Don’t use it for your coursework



Impulse Method

 This method acts on velocities of objects, and is based 

on conservation of momentum

 Commonly employed in video games

 The easiest ‘believable’ collision response system to 

integrate with your solver-based physics engine



Impulse Method

 When objects impact an immobile wall under this 

method, the resultant velocity is (almost – often you’ll 

take out a little energy in damping) of the same 

magnitude as the incident velocity

 This represents rigid objects, such as snooker balls, very 

well.

 It’s expected that you’ll have implemented this in your 

coursework. For more marks, you’re encouraged to 

investigate…



Penalty Method

 This acts directly on the acceleration of our objects, 

and involves a little understanding of the spring 

equation (covered in this tutorial)

 This permits deformable objects to act as colliders (soft 

bodies)

 This approach is also regularly employed in commercial 

engines

 Remember our first lecture – a versatile physics solution 

supports as many options as it can, and permits the 

programmer to decide which is appropriate to a given 

scenario



Penalty Method

 Isn’t very complex to implement, if you consider the 

nature of a constraint-based approach to physical 

collisions

 Requires you to work out new constraints

 Then apply those between the elements of a soft body

 This is challenging, and is expected if you’re aiming for 

top marks in the coursework



Physics!

 For the rest of this tutorial, we’ll be discussing the 

physics underpinning Impulse and Penalty methods

 We don’t go into the physics underpinning the 

projection method, as it’s both obvious (at the 

superficial level we need to consider – e.g., our objects 

can’t share the same space in the same time step), and 

stupidly complex (at the actual-physics level) to derive 

from first principles



Impulse-Based

Collision Response



What is Impulse?

 Impulse is the quantity defining force applied over a 

given time

 So, an object will gain impulse 𝐽 if subject to force 𝐹 for 

time interval ∆𝑡, or

𝐽 = 𝐹∆𝑡



What is Impulse?

𝐽 = 𝐹∆𝑡

 From Newton’s second law, we can reformulate this

𝐽 = 𝑚𝑎∆𝑡

 And since 𝑎 =
∆𝑣

∆𝑡
, we can simplify this down to

𝐽 = 𝑚
∆𝑣

∆𝑡
∆𝑡 = 𝑚∆𝑣



What is Impulse?

𝐽 = 𝑚
∆𝑣

∆𝑡
∆𝑡 = 𝑚∆𝑣

 Since we know from our first tutorial that Momentum is 

the product of mass and velocity, it stands to reason 

that Impulse is the rate of change of momentum (for an 

object of constant mass)

 The rationale, then, is to give colliding objects a nudge, 

by changing their velocity thus:

∆𝑣 =
𝐽

𝑚



What is Impulse?

∆𝑣 =
𝐽

𝑚

 The question then becomes how do we compute 𝐽

 To do this, let’s consider the scenario below:



What is Impulse?

 Ignoring the masses of the objects for a moment, and 

focusing on the velocities involved, what we care about 

is their relative velocity

 The formula to determine this relative velocity, possibly 

counter-intuitively, is

𝑣𝑎𝑏 = 𝑣𝑎 − 𝑣𝑏



What is Impulse?

𝑣𝑎𝑏 = 𝑣𝑎 − 𝑣𝑏

 Looking at the diagram, we can see how this is the case 

if we consider the Cartesian axes and how we represent 

vectors in them



What is Impulse?

𝑣𝑎𝑏 = 𝑣𝑎 − 𝑣𝑏

 Regarding the relative velocity, what really matters is 

the projection of that relative velocity along the 

contact normal, or

𝑣𝑛 = 𝑣𝑎𝑏 ∙ 𝑛



What is Impulse?

𝑣𝑛 = 𝑣𝑎𝑏 ∙ 𝑛

 We’ve talked a little about damping. One means of 

representing damping is through the coefficient of elasticity

𝜀.

 If 𝜀 = 1, a collision is totally elastic (no damping)

 If 𝜀 = 0, a collision is totally inelastic (objects stick together)

 Most collisions, naturally, fall somewhere between these 

extremes



What is Impulse?

 Following on from that, we can assert that

𝑣𝑛
+ = −𝜀𝑣𝑛

−

 Which, subbing back in for 𝑣𝑛 gives

𝑣𝑎
+ − 𝑣𝑏

+ ∙ 𝑛 = −𝜀 𝑣𝑎
− − 𝑣𝑏

− ∙ 𝑛

 We’ve added the 
+

and 
−

notation to indicate ‘after’ and 

‘before’ the collision, respectively



What is Impulse?

 Now we bring mass back into the equation – because we 

want to inject a little momentum into our system, along 

vector 𝑛, to resolve the collision

 Of course, we want our system to be stable, so we need to 

balance the injected momentum, leading to:

𝑚𝑎𝑣𝑎
+ = 𝑚𝑎𝑣𝑎

− + 𝐽𝑛
𝑚𝑏𝑣𝑏

+ = 𝑚𝑏𝑣𝑏
− + 𝐽𝑛

 Note that this notation assumes constant mass.



What is Impulse?

 Rearranging the last few equations allows us to determine 

the formula for 𝐽 in terms of 𝑛, 𝑣𝑎𝑏, and the masses involved

𝐽 =
− 1 + 𝜀 𝑣𝑎𝑏 ∙ 𝑛

𝑛 ∙ 𝑛
1
𝑚𝑎

+
1
𝑚𝑏



What is Impulse?

 In turn, this allows us to rearrange the linear velocity 

updates to

𝑣𝑎
+ = 𝑣𝑎

− +
𝐽

𝑚𝑎
𝑛

𝑣𝑏
+ = 𝑣𝑏

− −
𝐽

𝑚𝑎
𝑛

 Thinking back to how we define our constraint-based update, 

in the context of λ, you might be able to derive some 

commonality here…



What is Angular Impulse?

 That commonality is more obvious when we consider the 

angular scenario. Consider the diagram below:

 Obtaining an actual velocity from an angular velocity, 

assuming we’ve kept our system in radians, is a simple case 

of

𝑣𝑡 = 𝜔𝑟



What is Angular Impulse?

 Extending this to the contact manifolds of our spheres 

(remembering spheres will only ever have one contact 

point), leads to

𝑣𝐶𝑎 = 𝑣𝑎 + 𝜔𝑎𝑟𝑎
𝑣𝐶𝑏 = 𝑣𝑏 +𝜔𝑏𝑟𝑏



What is Angular Impulse?

 Remembering that we need to conserve angular momentum, 

we introduce the inertia matrix, leading to

𝐼𝑎𝜔𝑎
+ = 𝐼𝑎𝜔𝑎

− + 𝑟𝑎 × 𝐽𝑛
𝐼𝑏𝜔𝑏

+ = 𝐼𝑏𝜔𝑏
− − 𝑟𝑏 × 𝐽𝑛



What is Angular Impulse?

 Rearranging again to determine 𝐽 gives us the rather hideous

𝐽 =
− 1 + 𝜀 𝑣𝑎𝑏 ∙ 𝑛

1
𝑚𝑎

+
1
𝑚𝑏

+ 𝐼𝑎
−1 𝑟𝑎 × 𝑛 × 𝑟𝑎 + 𝐼𝑏

−1 𝑟𝑏 × 𝑛 × 𝑟𝑏 ∙ 𝑛



What is Angular Impulse?

𝐽 =
− 1 + 𝜀 𝑣𝑎𝑏 ∙ 𝑛

1
𝑚𝑎

+
1
𝑚𝑏

+ 𝐼𝑎
−1 𝑟𝑎 × 𝑛 × 𝑟𝑎 + 𝐼𝑏

−1 𝑟𝑏 × 𝑛 × 𝑟𝑏 ∙ 𝑛

 Which we can sub in to:

𝜔𝑎
+ = 𝜔𝑎

− +
𝑟𝑎 × 𝐽𝑛

𝐼𝑎
𝜔𝑏
+ = 𝜔𝑏

− +
𝑟𝑏 × 𝐽𝑛

𝐼𝑏



What is Angular Impulse?

𝜔𝑎
+ = 𝜔𝑎

− +
𝑟𝑎 × 𝐽𝑛

𝐼𝑎
𝜔𝑏
+ = 𝜔𝑏

− +
𝑟𝑏 × 𝐽𝑛

𝐼𝑏

 Thinking back to the form of the elements of our Jacobian, 

we should definitely be seeing a clear similarity at this point



Penalty-Based

Collision Response



Springs

 The physical properties of a spring, assuming it is not 

stretched beyond the point it will return to equilibrium, 

are

 When a spring is compressed by two objects, it forces 

them apart

 When a spring is elongated by two objects, it forces them 

together

 Essentially, a spring is always trying to return to 

rest/equilibrium



Springs

 The spring equation:

𝐹 = −𝑘𝑥 − 𝑐𝑣

 Where 𝑘 is the spring constant, 𝑥 is its displacement 

from equilibrium, 𝑐 is its damping factor (eventually 

slowing it to stop oscillating), 𝑣 is the velocity at which 

it’s oscillating, and 𝐹 is the resultant force

 Note that the sign is negative because F is a restorative 

force – always trying to move back towards equilibrium



Springs in Collision Response

 Consider again the scenario we used in the earlier 

section.

 In this scenario, 𝑣 = 𝑣𝑛 = 𝑣𝑎𝑏 ∙ 𝑛, making the equation:

𝐹 = −𝑘𝑑 − 𝑐(𝑣𝑎𝑏∙ 𝑛)



Springs in Collision Response

𝐹 = −𝑘𝑑 − 𝑐(𝑣𝑎𝑏∙ 𝑛)

 Equal and opposite (Newton’s 3rd law) forces are applied 

to each object involved in the collision, though 

obviously if one end of the ‘spring’ is attached to a 

stationary element of the environment, that end 

doesn’t have a force applied to it (it is ignored)



Springs in Collision Response

𝐹 = −𝑘𝑑 − 𝑐(𝑣𝑎𝑏∙ 𝑛)

 This method results in a force, which is processed in 

exactly the same way as any other force (Newton’s 

second law)

 Penalty method acts direction on acceleration



Springs in Collision Response

𝐹 = −𝑘𝑑 − 𝑐(𝑣𝑎𝑏∙ 𝑛)

 Selection of 𝑘 and 𝑐 is important

 High 𝑘 makes objects stiff, low 𝑘 makes them flimsy

 High 𝑐 makes objects bounce fewer times before settling, 

while low 𝑐 makes them trampoline-like



Springs in Collision Response

𝐹 = −𝑘𝑑 − 𝑐(𝑣𝑎𝑏∙ 𝑛)

 You can implement springs as a constraint type, just as 

you have an implementation of distance constraints

 Have fun with this and experiment, should you decide 

to do it – can add some very nice effects to your physics 

demo



Soft Bodies



Soft Body Representation

 We’ve discussed Soft Bodies before in this tutorial 

series. We know they let us represent objects which are 

deformable, but how do we actually simulate them?

 Well, fundamentally, we simulate them through the 

constraints we have discussed over the course of this 

series.

 Consider a web of physical nodes, connected by 

constraints



Soft Body Representation



Soft Body Representation

 Some of you have already experimented with this 

approach, making rope bridges and pendulums with 

multiple distance constraints

 This is the fashion in which we would normally 

represent soft bodies

 A set of points connected by constraints

 Which constraints we apply depends upon the properties 

we want the soft body to exhibit

 Common use for spring constraints



Contact Constraint



Constraints

 Our entire physics implementation is constraint-based

 By now, we have gained quite a bit of experience 

exploring the consequences of a constraint-based 

approach to physics simulation

 We have hopefully attempted to implement our own 

constraints



Inequality Constraints

 Sometimes we want a constraint which will only act in a 

certain area of our environment

 Sometimes we want a constraint which will only act in a 

certain direction, or set of directions

 We can think of a ratchet example – we only want that 

constraint to operate within specific parameters

 Can only rotate clockwise, never rotates anti-clockwise



Inequality Constraints

 To do this, we revisit λ

 We apply an inequality restriction on λ which limits the 

constraint force – what this means is

λ− ≤ λ ≤ λ+

 Where λ− is some lower boundary value, and λ+ is some 

upper boundary value, to our constraint force.

 In an unrestricted constraint, λ− = −∞ and λ+ = +∞



The Contact Constraint

 The contact constraint is bounded such that λ− = 0 and 

λ+ = +∞

 As such, the force between the surfaces of our objects 

can only ever push out-over under this constraint

 Doesn’t affect other constraints which apply to the 

objects

 The constraint we will use to model collision is defined

C = 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝐧



Constraint-Based Collision 

Resolution
C = 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝐧

 Consider the diagram below, and how this constraint 

maps to its physical characteristics:



Constraint-Based Collision 

Resolution
C = 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝐧

 We define the contact point 𝐩 = 𝐱 + 𝐫, indicated by the 

blue circle on the diagram



Constraint-Based Collision 

Resolution
𝐩 = 𝐱 + 𝐫

 Differentiating with respect to time provides
𝑑𝐩

𝑑𝑡
= 𝐯 + 𝜔 × 𝐫

 Remembering our tutorial on Constraints, differentiating C gives:

ሶC = 𝐯2 + 𝜔2 × 𝐫2 − 𝐯1 − 𝜔1 × 𝐫1 ∙ 𝐧1 + 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝜔1 × 𝐧1



Constraint-Based Collision 

Resolution
ሶC = 𝐯2 + 𝜔2 × 𝐫2 − 𝐯1 − 𝜔1 × 𝐫1 ∙ 𝐧1 + 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝜔1 × 𝐧1

 The second term, if we look closely, is basically our penetration 

depth. Assuming this value to be small enough to discount, we can 

rewrite cee-dot:

ሶC ≈ 𝐯2 + 𝜔2 × 𝐫2 − 𝐯1 − 𝜔1 × 𝐫1 ∙ 𝐧1



Constraint-Based Collision 

Resolution
ሶC ≈ 𝐯2 +𝜔2 × 𝐫2 − 𝐯1 − 𝜔1 × 𝐫1 ∙ 𝐧1

 Repeating the steps we went through in tutorial 4, we can 

rearrange this into terms of 𝐯1, 𝜔1, 𝐯2, and 𝜔2:

 ሶC ≈ −𝐧 ∙ 𝐯1 + − 𝐫1 × 𝐧 ∙ 𝜔1 + 𝐧 ∙ 𝐯2 + 𝐫2 × 𝐧 ∙ 𝜔2

 Which provides a Jacobian of the form

𝐉 =

−𝐧𝑇

− 𝐫1 × 𝐧 𝑇

𝐧𝑇

𝐫2 × 𝐧 𝑇



Constraint-Based Collision 

Resolution

𝐉 =

−𝐧𝑇

− 𝐫1 × 𝐧 𝑇

𝐧𝑇

𝐫2 × 𝐧 𝑇

 We remember the form of the Jacobian – each element maps to 

one attribute of motion.

 Since the purpose of this constraint is to push the two objects 

apart, we apply the following restriction to our solution: 0 ≤ λ ≤ ∞



Constraint-Based Collision 

Resolution
0 ≤ λ ≤ ∞

 Our collision is resolved by solving this constraint and clamping 

the value of λ to this region



Constraint-Based Collision 

Resolution

 But what about our Collision Manifold?

 We spent a lot of time computing it, aren’t we meant to use it 

now?



Constraint-Based Collision 

Resolution

 Yes!

 There are two options as to how you can leverage the collision 

manifold in these scenarios



Constraint-Based Collision 

Resolution

 The first sacrifices a little accuracy.

 We iterate through each contact point

 The bulk of the collision, generally, is resolved by the first 

contact point

 Then a chunk of the remainder by the second, and so on, and so 

on.



Constraint-Based Collision 

Resolution

 A more accurate approach would be to divide the constraint 

resolution between contact points

 How you would go about this is an extension to the coursework

 Experiment and have fun!



Friction



Constraints as Friction

 We can use this inequality constraint approach to model 

friction in our system

 We begin by defining two perpendicular unit vectors, 

the cross product of which is a normal to both

𝐮1 × 𝐮2 = 𝐧

 These unit vectors 𝐮1 and 𝐮2 are tangents to the surface 

of objects which are in contact – so, in the case of a 

cube being dragged along the ground, they might be 

unit vectors of the edges in contact with the ground



Constraints as Friction

 We can apply the constraint constructed to resolve 

collisions to 𝐮1 and 𝐮2, giving two new constraints

C1 = 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝐮1
C2 = 𝐱2 + 𝐫2 − 𝐱1 − 𝐫1 ∙ 𝐮2

 Together, these two constraints allow us to restrict the 

movement of the contact point(s) along the surface in 

any direction along the surface

 We derive their Jacobians to be:

𝐉1 =

−𝐮1
𝑇

− 𝐫1 × 𝐮1
𝑇

𝐮1
𝑇

𝐫2 × 𝐮1
𝑇

𝐉2 =

−𝐮2
𝑇

− 𝐫1 × 𝐮2
𝑇

𝐮2
𝑇

𝐫2 × 𝐮2
𝑇



Constraints as Friction

𝐉1 =

−𝐮1
𝑇

− 𝐫1 × 𝐮1
𝑇

𝐮1
𝑇

𝐫2 × 𝐮1
𝑇

𝐉2 =

−𝐮2
𝑇

− 𝐫1 × 𝐮2
𝑇

𝐮2
𝑇

𝐫2 × 𝐮2
𝑇

 We approximate the limits on our λ based on a realistic 

approximation of the force an object acting under 

gravity would experience as friction (meaning 𝑚𝑔, 

multiplied by some constant 𝜇) such that

−𝜇𝑚𝑔 ≤ λ ≤ 𝜇𝑚𝑔

 This applies to both constraints, and we can experiment 

with 𝜇 to find a value which suits our simulation



Constraint Drift

and Baumgarte



Constraint Drift

 We introduced the correction factor for Constraint Drift 

in Tutorial 4, using the equation

𝐉𝐕 = −𝛽C

 This is the Baumgarte scheme, and acts to compensate 

for Constraint Drift

 Constraint Drift is, in part, a consequence of our time-

stepped physics simulation – more on this later

 Because our results for time step 𝑡𝑛+1 are based on 

erroneous results from time step 𝑡𝑛, etc.



Constraint Drift

 When we first introduced constraints, we stated they 

shouldn’t add or remove energy from the system, e.g.

ሶC = 0

 Once we consider the error that’s slowly entering the 

system, it’s more accurate to say that

ሶC ≈ 0



Baumgarte Offset

ሶC ≈ 0

 If the error is related to time, and the constraint itself, 

then we can reason (or prove, if you want to read the 

paper), the following

ሶC 𝑡 + 𝛽C t = 0

 We clamp the Baumgarte constant to lie in the region

0 < 𝛽 <
1

∆𝑡



Baumgarte Offset

0 < 𝛽 <
1

∆𝑡

 This is one reason for us using a fixed time step, as it 

means the boundaries of our Baumgarte offset are static

 If we varied time step, we would need to investigate 

the derivation of the Baumgarte offset and recompute it 

with each time step

 The time taken to do so would, by necessity, make the 

resulting computation inaccurate in any case



Summary

 Introduced three methods of collision response

 Discussed mathematical underpinnings of Impulse-based 

collision response

 Introduced the spring equation as the basis for Penalty-

based collision response

 Discussed soft-body representation as a mesh of nodes 

connected by constraints

 Introduced contact constraints

 Discussed Friction

 Discussed error-correction (Baumgarte)


