
Physics Tutorial 7:

Solvers



New Concepts

 Differentiating Constraints, Revisited

 Jacobian solutions

 The Constraint Force

 Global Solvers

 Linear Equations and Gauss-Seidel



Constraints, Revisted



Why do we need Constraints?

 “Things that need to be true, so our system will be 

accurate”

 That’s obvious in our approach to calculus, and our 

criticisms of it – our concern is the accuracy of the 

approach involved, stability, relation between 

complexity and time step, etc.

 Constraints turn this on its head

 As we said earlier this week, instead of asking 

what must be true in order for our system to be 

accurate, we’re asking what mustn’t be true in 

order for our system not to be inaccurate



Why do we need Constraints?

 A single object moving through space can happily be 
represented forever using numerical integration

 Once you have that object interact with things, 
integration itself isn’t generally enough – things can 
stop the object moving, or affect how it moves.

 Constraints are a means of representing these 
interactions in concert with each other – instead of 
treating each object as an independent, perfect 
Newtonian entity, we establish what the object can and 
cannot do contextually.



Why do we need Constraints?

 Example: A Wheel

 How is this object 

constrained?

 It can freely rotate 

about a single point 

(its axel) along a single 

axis

 The wheel itself cannot 

move in linear fashion



Why do we need Constraints?

 Example: A Door on a Hinge

 How is this object 

constrained?

 It can rotate about a 

single point (its hinge) 

along a single axis, but 

this rotation is bounded

 The door cannot move in 

linear fashion



Why do we need Constraints?

 Example: A Book

 How is this object 
constrained?

 Consider the cover and 
the pages to be different 
objects

 Cover and the pages have 
a constraint between 
them, hinging them at the 
spine of the book

 Opening the cover affects 
the pages



Why do we need Constraints?

 Example: A PENDULUM 

OF SWINGING DEATH

 So, what type of 

constraint is Poe’s 

eponymous pendulum?



Why do we need Constraints?

 Example: A PENDULUM 

OF SWINGING DEATH

 So, what type of 

constraint is Poe’s 

eponymous pendulum?

 Same as the door on a 

hinge – single constraint 

allowing bounded 

rotation about one axis



Resolving Constraints?

 In its simplest form, a Constraint system will take the 

form of a set of linear equations

 We pass in the velocities (as an example), both linear 

and angular, and the system resolves to a force to be 

applied to each object in the system

 Resolving these constraints is the purpose of a Solver, 

which we’ll explore in-depth later in the lecture



Resolving Constraints?

 Constraint-based solvers permit us to resolve all 
constraints on a system simultaneously (e.g., in a single 
time-step). But why would we bother with resolving all 
constraints on all objects in one solver?

 What happens when we’ve got multiple constraints 
affecting the same object? A stack of boxes or a ball 
pool?

 By solving the system in its entirety, no one object will 
be affected more than the others (e.g., the box at the 
bottom of the stack won’t be unduly pushed further 
than the other boxes)



The Jacobian



What is the Jacobian?

 Imagine two objects, A and B, with velocities𝑣𝐴𝑣𝑏and 
angular velocities 𝜔𝐴𝜔𝐵, respectively.

 A velocity constraint (representing the entire velocity of 
this system) needs to consider all four variables.

 Define that velocity constraint V as

 𝑽 =

𝒗𝑨
𝝎𝑨

𝒗𝑩
𝝎𝑩



What is the Jacobian?

 By using the POWER OF MATH (see the calculus in the 

handout), we can calculate the rate at which the 

constraint changes value. This shouldn’t be confused 

with rate of change of velocity (acceleration).

 If we differentiate the constraint 𝐶, to obtain ሶ𝐶 (pron. 

cee-dot) we get an equation of the form:

 ሶ𝐶 = 𝑗1 ∙ 𝑣𝐴 + 𝑗2 ∙ 𝜔𝐴 + 𝑗3 ∙ 𝑣𝐵 + 𝑗4 ∙ 𝜔𝐵

 ሶ𝑪 = 𝑱𝑽 = 𝒋𝟏 𝒋𝟐 𝒋𝟑 𝒋𝟒

𝒗𝑨
𝝎𝑨

𝒗𝑩
𝝎𝑩

=0



The Constraint Force



The Constraint Force

 So, the Jacobian’s important – in fact, it’s the key to 

unlocking constraint-based solvers

 We also need to consider the concept of Work done –

this is a physical concept that comes, again, from 

Newtonian dynamics

 An object is considered to have done work 𝑊 if it has 

moved a distance 𝑠 under force 𝐹
𝑊 = 𝐹 ∙ 𝑠

 Note that this is a dot product of two vectors

 Work done is a scalar



The Constraint Force

 Consider a weight of mass 𝑚 resting on a table of height 

ℎ. From previous lectures we know that there is a force 

(gravitational) pulling the weight downwards, and a 

countering force from the table which holds the weight 

in equilibrium

 In this system, no work is done, because 𝑠 has no 

magnitude (the weight isn’t going anywhere)

 If the table suddenly disappeared, the mass would 

accelerate at 𝑔 (gravitational acceleration) and travel ℎ
metres towards the ground

 𝐹 = 𝑚𝑔, ergo work done 𝑊 = 𝑚𝑔ℎ (which correlates to 

the weight’s potential energy at height ℎ)



The Constraint Force

 A constraint, as we said right at the beginning of the 

lecture, is something an item cannot do if our system is 

to avoid being inaccurate

 A constraint might stop an object from occupying a 

location (such as, the location of another object…)

 A constraint might ensure an object can only pivot 

about a certain axis, or a certain amount (like a knee 

joint)

 As such, a constraint never adds energy to the system

 This is a key concept – comes back to conservation of 

momentum and system stability



The Constraint Force

 So, let’s consider the rate of work done (power 𝑃)

 Since we know that a constraint never adds energy 

(work) to the system, 𝑃 = 0

 More fully: 𝑃 = 𝐹 ∙
𝑠

∆𝑡
= 0

 We recall from yesterday that change in displacement 

over change in time is analogous to velocity 𝑣, ergo

𝐹 ∙ 𝑣 = 0



The Constraint Force

 Considering again a two-body case, we can generalise 

this principle – each body has two quantities that keep 

them constrained (so four, total, in the system):

𝐹 =

𝑓1
𝜏1
𝑓2
𝜏2

 Remember that we’re dealing with both linear and 

angular, hence our inclusion of torque

 You’ll notice that this is of the form of our velocity 

constraint 𝑉; generalising this further, as constraint 

forces are perpendicular to the velocity vector, allows 

us to conclude that:

𝐹 ∙ 𝑉 = 0



The Constraint Force

𝐹 ∙ 𝑉 = 0

 This, really, is the basis for our constraint-based solver

 As this is the relationship our Jacobian has with the 

velocity vector V, we can use the Jacobian as the basis 

of our constraint force. By multiplying through by an 

unknown quantity λ, the constraint force becomes:

𝐹 = 𝐽𝑇λ

 Computing λ was discussed earlier in the week



The Global Solver



The Global Solver

 So, by now we have (hopefully!) a good understanding 

of what a constraint is, and how constraints help us 

represent physical events in our simulation

 The global solver is the umbrella term for how we 

leverage constraints to handle an entire scene

 The rationale for it is fairly straightforward



The Global Solver

 Consider the example of 

a stack of boxes.

 If we resolve a 

constraint between B 

and C, that result will 

be invalidated by the 

resolution between A 

and B

 To avoid this we 

consider all constraints 

acting on B in the same 

set of linear equations

A

B

C



‘Global’ isn’t really ‘Global’

 But if you look at the way the system is operating we’re 

actually resolving constraints iteratively

 What this means is that our system is always moving 

towards the correct solution, even if it’s not there on 

any given frame



‘Global’ isn’t really ‘Global’

 All global solvers do this

 The important point is that all constraints are resolved as 

best they can, and more iterations move us towards greater 

accuracy (in the context of our linear equations – in the 

context of our time-stepped physics system, we tend away 

from accuracy)

 So how do we do it?



Solving Linear Equations



Consider the following 

equations…

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

 Simple way of solving 

you’ll have learned in 

school

 Rearrange to isolate a 

variable (𝑥 = 𝑧 + 6, 𝑦 =
3 − 2𝑧)

 Substitute to compute 𝑧

 Rinse and repeat



Consider the following 

equations…

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

 Straightforward 

approach to understand

 Not tractable for large 

systems – what if you 

have a dozen unknowns?

 Need a more 

computationally 

efficient approach



Matrix approach

(Ax = b Form)

4𝑥 + 𝑦 = 23
𝑥 − 𝑧 = 6
2𝑧 + 𝑦 = 3

4 1 0
1 0 −1
0 1 2

𝑥
𝑦
𝑧

=
23
6
3

 Rearrange our array of 

equations into a matrix

 Remembering how 

matrices multiply out, 

this should be intuitive

 Representation is 

scalable, i.e.:



Matrix approach

(Ax = b Form)

𝑎11 𝑎21
𝑎12 𝑎22

⋯ 𝑎𝑖1
⋯ 𝑎𝑖2

⋮ ⋮
𝑎1𝑗 𝑎2𝑗

⋱ ⋮
⋯ 𝑎𝑖𝑗

𝑥1
𝑥2
⋮
𝑥𝑗

=

𝑏1
𝑏2
⋮
𝑏𝑖

A x     =    b

 𝑨 is the Coefficient Matrix (the coefficients in our 

equation array, so the 2 in 2x)

 𝒙 is the Solution Vector – the unknowns we’re 

attempting to compute

 𝒃 is the Constant Vector – the RHS of our equations

 Also, Baumgarte – more on that later



Using linear solvers to resolve 

multiple constraints…

 Many approaches to solving the 𝑨𝒙 = 𝒃 form

 Jacobi Method

 Parallelisable (so good for GPU), but slow convergence

 Gauss-Seidel

 Simplest to implement, default framework approach

 Successive Over-Relaxation

 Faster convergence than Gauss-Seidel, more complex to implement

 Conjugate Gradient Method

 More complex, faster convergence

 And many, many more…



Gauss-Seidel

 Iterates through each row of the A matrix

 Solves every constraint acting on a given object, in 

order

 Output is how the object’s velocity must change in 

order to more closely satisfy its constraints

 Note the ‘more closely’.

 It’s an eventually consistent approach – always tending 

towards accuracy, but never quite reaching it so long as 

objects within the environment are interacting



Gauss-Seidel

 Assumes that all objects have non-zero mass (which 

must be true, because dividing by zero is bad).

 Unbounded solution time – convergence can take 

forever – imagine a wall with infinite mass, constrained 

to another wall with infinite mass – will take infinite 

time to compute

 Engineering solution: Iteration cap, will only go through 

a certain number of iterations before providing output

 Using last solution as a basis statistically improves 

performance (compared with starting from 0)



Gauss-Seidel

 Ordering of constraint solution MATTERS

 To converge towards same answer, each iteration must 

iterate over constraints in the same order every time

 Imagine a stack of boxes.

 First iteration, starts at the top, bottom box is most 

affected

 Second iteration, starts at the bottom, top box is most 

affected

 Never close to convergence because oscillates between 

priorities



Gauss-Seidel

 In implementation terms, just means the for-loop 

executes the same way each iteration

 Randomising the order of manifolds each time-step 

(NOT each iteration!) may lead to greater accuracy. 

Consider why…



Constraint Drift



Preventing Constraint Drift

 Time-series – errors spiral over time

 Problem made more apparent by eventually-consistent 

nature of solver

 Consider the distance constraint presented in a previous 

lecture

 Constraint is based entirely on velocity

 If one object moves in a single frame, constraint will not 

realise it, and continue to update based on new distance



Baumgarte Stabilisation

 Adds forces to the system to compensate for previous 

errors

 Can be considered 𝒃 in our 𝑨𝒙 = 𝒃

 In the framework, managed through addition of velocity 

based on length of constraint

 Eventually compensates for drift, in the same way that 

our solver is eventually consistent



Baumgarte Stabilisation

 Value for Baumgarte not readily predictable

 Will need fine-tuning

 Too little, doesn’t prevent drift. Too much, system 

explodes.

 Usually a value between 0.1 and 0.3 that which would 

be needed to resolve the positional error in a single 

time-step is appropriate, but will need some 

experimentation



Summary

 Revisited Constraints

 Discussed the Jacobian

 Connected both back to force (on which our system 

hinges, pun intended)

 Introduced the concept of the global solver

 Linear Algebra

 Gauss-Seidel

 Baumgarte



Implementation

 Explore collision response

 Vary Baumgarte, experiment with it

 Stack objects

 Start coursework


